光热自愈合超疏水膜的制备和防冰性能

Preparation and Anti-icing Performance of a Photothermal Self-Healing Superhydrophobic Membrane

  • 摘要: 针对柔性超疏水膜基材料在户外防冰应用中面临动态抗润湿能力、机械耐久性和因紫外线氧化引起的化学耐久性不足等问题。本文通过对石墨烯、TiO2和SiO2等纳米颗粒氟化修饰,并将修饰后的颗粒分布在热塑性聚氨酯(TPU)基质内,通过优化激光加工参数,制备了一种可大变形的光热自愈合超疏水膜(Photothermal self-healing superhydrophobic, PTHSHM)。本文研究了PTHSHM的动态抗润湿性、机械耐久性、防/除冰性能以及在物理/化学损伤下的愈合性能。PTHSHM在400%应变下,经1000次循环拉伸后表面水接触角不低于156.4°。同时,断裂后的PTHSHM在0.4 W/cm2红外光照射下8分钟后愈合效率达到97.6%。此外,在化学损伤-愈合方面,经过10次氧等离子刻蚀-修复循环后,其表面水接触角仍在(5±2)°和155°之间可逆转换。此外,在−15℃的环境下,PTHSHM表面延迟结冰时间为350 s,冰粘附强度低至55 kPa,20 μL冰滴在0.1 W/cm2的太阳光下的融化并滚落时间为77 s。综上,PTHSHM表现出良好的机械和化学耐久性,在延迟结冰时间和降低冻结粘附方面优势显著。

     

    Abstract: To address challenges related to dynamic anti-wetting, mechanical durability, and chemical resistance due to UV oxidation faced by flexible superhydrophobic membrane materials in outdoor anti-icing applications, this paper presents a study on the fabrication and performance of a photothermal self-healing superhydrophobic membrane (PTHSHM). The membrane was prepared by fluorinated-graphene/TiO2/ SiO2 nanoparticles and dispersing them in a thermoplastic polyurethane (TPU) matrix, followed by optimizing laser processing parameters to achieve the hydrophobic modification. The PTHSHM exhibited impressive performance in terms of dynamic anti-wetting, maintaining a water contact angle of 156.4° even after 1000 cycles of stretching with a 400% strain. Moreover, it demonstrated efficient self-healing abilities, achieving a healing efficiency of 97.6% in 8 minutes under 0.4 W/cm−2 infrared illumination. Moreover, the membrane showed strong resistance to chemical damage, retaining a water contact angle of at least 155° after 10 cycles of oxygen plasma etching and repair. In anti-icing tests, the delayed freezing time and ice adhesion strength of PTHSHM is measured as 350 s and 55 kPa. A 20 μL ice droplet melted and rolled off in 77 s under 0.1 W/cm2 sunlight. Overall, the PTHSHM displays excellent mechanical and chemical durability, along with significant advantages in delaying ice formation and facilitating ice removal, making it a promising candidate for various outdoor anti-icing applications.

     

/

返回文章
返回