Loading [MathJax]/jax/output/SVG/jax.js

氧化石墨烯包覆砂对水泥砂浆性能的影响

王迎豪, 郑城, 张逸舟, 苏俊儒, 张惠一, 胡兵兵, 袁小亚

王迎豪, 郑城, 张逸舟, 等. 氧化石墨烯包覆砂对水泥砂浆性能的影响[J]. 复合材料学报, 2025, 42(6): 3333-3343.
引用本文: 王迎豪, 郑城, 张逸舟, 等. 氧化石墨烯包覆砂对水泥砂浆性能的影响[J]. 复合材料学报, 2025, 42(6): 3333-3343.
WANG Yinghao, ZHENG Cheng, ZHANG Yizhou, et al. Effect of graphene-oxide coated sand on the properties of cement mortar[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3333-3343.
Citation: WANG Yinghao, ZHENG Cheng, ZHANG Yizhou, et al. Effect of graphene-oxide coated sand on the properties of cement mortar[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3333-3343.

氧化石墨烯包覆砂对水泥砂浆性能的影响

基金项目: 国家自然科学基金项目(51402030);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0031);重庆市级引导区县科技发展专项资金(JSYY2023010);重庆市研究生导师团队建设项目(JDDSTD2022006)
详细信息
    通讯作者:

    袁小亚,博士,教授,硕士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土 E-mail:yuanxy@cqjtu.edu.cn

  • 中图分类号: TU528;TB33

Effect of graphene-oxide coated sand on the properties of cement mortar

Funds: National Natural Science Foundation of China (51402030); Chongqing Key Special Project for Technological Innovation and Application Development (CSTB2022TIAD-KPX0031); Chongqing Municipal Guided Special Fund for County and District Science and Technology Development (JSYY2023010); Chongqing Graduate Supervisor Team Construction Project (JDDSTD2022006)
  • 摘要:

    界面过渡区(ITZ)是水泥基材料中最为薄弱的部分,对水泥砂浆和混凝土的力学性能和耐久性有决定性的作用。本研究通过将氧化石墨烯(GO)附着在砂粒表面,探究GO包覆砂(GO@sand)对水泥砂浆性能的影响。结果表明,砂在GO悬浮液中搅拌12 h后,GO吸附量达到最大值0.093 mg/g;当GO掺量为0.024%时,可以显著改善水泥砂浆的力学性能和耐久性能,相比基准试件,3d抗压强度和抗折强度分别提高了31.12%、23.21%;28 d抗压强度和抗折强度也提高了11.76%、17.65%;砂浆抗渗压力提高了140%,抗硫酸盐侵蚀性能也有较大提升。通过对硬化后的水泥砂浆试块的XRD和SEM测试结果分析,表明吸附在砂表面的GO能加速ITZ区域的水泥水化进程、提高水化产物含量,增强ITZ的密实度,抑制微裂纹的扩展,从而增强水泥砂浆的力学性能和耐久性能。本文提供了一种GO@sand的方法来提升水泥砂浆的性能,凸显了GO@sand对ITZ纳米工程的有效性,可推广到其他水泥基材料。

     

    Abstract:

    The interface transition zone (ITZ) is the weakest part in cement-based materials and plays a decisive role in the mechanical properties and durability of cement mortar and concrete. This study explored the impact of graphene oxide coated sand (GO@sand) on the performance of cement mortar by attaching graphene oxide to the surface of sand particles. The results indicate that after stirring the sand in a GO suspension for 12 hours, the amount of GO adsorbed by the sand reaches the maximum value of 0.093 mg/g; When the dosage of GO is 0.024%, it significantly improves the mechanical and durability properties of the cement mortar, Compared to the control specimens, the 3-day compressive strength and flexural strength increase by 31.12% and 23.21%, respectively; the 28-day compressive strength and flexural strength also increase by 11.76% and 17.65%, respectively; the mortar's resistance to permeation is enhanced by 140%, and the resistance to sulfate erosion also shows a significant improvement. The analysis of the XRD and SEM test results from the hardened cement mortar specimens indicates that the GO adsorbed on the surface of the sand has accelerated the hydration process in the ITZ, increased the content of hydration products, enhanced the compactness of the ITZ, and inhibited the propagation of micro-cracks, thereby enhancing the mechanical properties and durability of the cement mortar. This paper provides a method for enhancing the performance of cement mortar using GO@sand, highlighting the effectiveness of GO@sand in ITZ nano-engineering, and indicating that this approach can be extended to other cement-based materials.

     

  • 由于石油资源不可再生,生物基的食品包装材料引起了学术界和工业界的广泛关注。尼龙612 (PA612)是一种半结晶性热塑性聚合物,可由单体己二胺和十二碳二酸缩聚而成,其中十二碳二酸可以从植物油中获得,因此PA612属于半生物基材料[1]。在包装领域,尼龙通常作为软包装应用,其具备优异的力学、耐穿刺、光学、阻隔、耐化学溶剂等综合性能[2]。在尼龙包装薄膜中,尼龙6 (PA6)薄膜应用最广,而PA612与PA6在结构性能上有一定的相似性,且较PA6具有更低的吸湿率和更好的尺寸稳定性[3]。细菌的滋生不仅影响食品新鲜度,还直接影响人体健康,因此尼龙抗菌包装材料的研究与开发受到了普遍重视[4-6]。各种类型的无机抗菌剂,如银类抗菌剂、钛类抗菌剂、锌类抗菌剂、铜类抗菌剂已经开发出来,在PA复合材料上表现出不同程度的抗菌效果[7-12]

    纳米氧化锌(以下简称ZnO)由于其较低的成本、无毒、对环境友好及优异的抗菌性能,被认为是一种有前景的抗菌剂[13]。此外,ZnO已被美国食品和药物管理局(FDA)列为公认安全(GRAS)的材料。目前,针对ZnO纳米颗粒提出的抗菌机制主要有4个方面,即活性氧ROS的生成、Zn2+的离子释放、表面静电相互作用和纳米粒子的内化[14]。Wang等[10]利用原子层沉积(ALD)与水热技术相结合制备了抗菌PA6-ZnO多级纳米纤维,发现其可有效抑制细菌存活。Li等[15]通过熔融共混和热压成型工艺制备纳米氧化锌/高密度聚乙烯(HDPE)复合薄膜并研究其机械和抗菌性能发现,通过添加纳米ZnO颗粒,提高了HDPE薄膜的拉伸强度和断裂伸长率。 ZnO/HDPE纳米复合材料表现出良好的抗菌活性,尤其是对金黄色葡萄球菌。Kim等[16]采用溶液法制备了聚乳酸(PLA)/ZnO纳米复合薄膜,其对金黄色葡萄球菌和大肠杆菌显示出明显的抗菌活性,但具有超过3wt%ZnO含量的生物纳米复合膜由于团聚和分散性差导致表面粗糙和结晶度降低。因此,为充分发挥ZnO的抗菌特性和纳米效应,同时提高其在聚合物基体中的分散性,需要对其进行表面改性。

    γ-氨丙基三乙氧基硅烷偶联剂(KH550)是常用的改性剂,能有效改善纳米粒子在基体中的分散。Li等[17]采用KH550对氧化锌纳米粒子进行改性,发现纳米颗粒的分散性得到了很大的改善,有效地打破了纳米颗粒的团聚现象。截止目前,针对KH550改性纳米ZnO做为抗菌剂在PA612薄膜中应用的相关研究尚未开展。

    本文利用KH550湿法改性纳米ZnO (m-ZnO),然后将m-ZnO加入到PA612基体材料中,通过双螺杆挤出造粒制备了纳米抗菌复合材料,通过挤出流延制备了PA612纳米抗菌复合薄膜。研究了m-ZnO对纳米复合材料热稳定性、结晶行为、力学性能和抗菌性能的影响。

    实验选用的PA612 (Zytel® 151L NC010)熔点为218℃,购自杜邦公司;纳米氧化锌(ZnO),粒径50 nm,上海阿拉丁生化科技股份有限公司;硅烷偶联剂KH550,分子量为221.37 g/mol,安徽泽升科技有限公司;溶菌肉汤(LB肉汤)、琼脂粉,青岛高科技工业园海博生物技术有限公司;大肠杆菌(ATCC25922)、金黄色葡萄球菌(ATCC29213),上海鲁微科技有限公司。

    利用偶联剂KH550对纳米氧化锌进行改性。将20 g纳米ZnO和500 mL 95%乙醇加入到1000 mL的三口烧瓶中,超声分散30 min,然后搅拌加热至75℃。将2 g KH550预水解1 h后缓慢加入到ZnO溶液中,在75℃下搅拌4 h后终止反应。然后将所得混合物抽滤分离,并用乙醇洗涤3次,以去除过量的KH550。将表面改性的纳米氧化锌(m-ZnO)在真空干燥箱中60℃干燥12 h,最后研磨成粉末备用。

    采用熔融复合法制备了含m-ZnO纳米颗粒的PA612纳米复合材料。将所需含量的m-ZnO与PA612在双螺杆挤出机(CTE 35 PLUS,南京科倍隆机械有限公司)中在250℃下熔融共混挤出,然后用流延机(FDHU-35,广东市普同实验分析仪器)以20 r/min的固定转速在270℃下流延成膜,流延膜厚度为(120±10) μm。所制备的m-ZnO/PA612纳米复合材料简称Xm-ZnO/PA612。为了比较,以同样的步骤,将原始的ZnO纳米颗粒与PA612混合,所制备的ZnO/PA612纳米复合材料简称XZnO/PA612,其中X为纳米复合材料中ZnO的质量分数。复合薄膜具体质量配比如表1所示。

    表  1  不同ZnO含量的ZnO/PA612抗菌复合膜
    Table  1.  ZnO/PA612 antibacterial composite films with different ZnO content
    SampleMass fraction/wt%
    PA612m-ZnOZnO
    PA612 100 0 0
    0.5wt%m-ZnO/PA612 99.5 0.5 0
    2wt%
    ZnO/PA612
    98 0 2
    2wt%m-ZnO/PA612 98 2 0
    4wt%m-ZnO/PA612 96 4 0
    6wt%m-ZnO/PA612 94 6 0
    Notes: m-ZnO—Modified nano zinc oxide; ZnO—Unmodified nano zinc oxide; PA612—Nylon 612.
    下载: 导出CSV 
    | 显示表格

    傅里叶变换红外光谱(FTIR)测试:采用Bruker TENSOR II型红外光谱仪进行测试,扫描范围为4000~400 cm−1,波数分辨率为4 cm−1

    扫描电子显微镜(SEM)和能量色散X射线能谱(EDX)测试:先将样品在液氮中低温脆断后贴于导电胶,然后将样品在真空条件下喷金,再排布在样品台上观察,电压3 kV。

    差示扫描量热仪(DSC)测试:采用德国耐驰公司的DSC214型差式扫描量热仪,取5~10 mg样品,在N2氛围下将样品由25℃加热至280℃,保持5 min去除热历史后降至25℃,各阶段升温速率均为10℃/min。结晶度由下式计算:

    Xc=ΔHm(1wf)ΔH0×100% (1)

    其中:∆Hm为熔融焓;wf为m-ZnO的质量分数;∆H0为PA612结晶度为100%对应的熔融焓(258 J/g)[18]

    X射线衍射仪(XRD)测试:采用日本理学的UltimaIV型X射线衍射仪,反射模式,铜靶,管电压为40 kV,管电流为30 mA,测试范围为5°~30°,扫描速率为2°/min。

    热重分析仪(TGA):美国TA仪器公司Q20型,在氮气气氛下进行,试样以10℃/min的升温速率从30℃加热到600℃。

    力学性能测试:采用深圳万测实验设备有限公司的ETM-104B型万能力学试验机,通过哑铃裁刀,将薄膜裁为长35 mm、窄部宽2 mm的哑铃型样条。测试前把样条放置在23℃、相对湿度为50%的条件下恒温恒湿处理48 h,测试速度为50 mm/min,取5根样条结果的平均值。

    光学测试:采用上海精密科学仪器有限公司的WGT-S透光度雾度测试仪,参照国家标准GB/T 2410—2008[19],测量薄膜的透光率和雾度。

    抗菌活性检测:采用贴膜平板计数法测试样品抗菌率,参照国家标准GB/T 31402—2015[20]。样品处理:将样品裁成5 cm×5 cm大小,覆盖膜裁成4 cm×4 cm大小,先于酒精中浸泡30 min,然后取出放于紫外灯下两面各照射灭菌 30 min,备用。菌液准备:取活化后的菌液10 μL于30 mL液体培养基中,在恒温振荡器上培养16 h后,将菌液稀释约至105 CFU/mL的浓度。共培养:将试样放入无菌培养皿中,用移液管吸取0.4 mL菌液,滴到每个试样表面,并将覆盖膜盖于接种好的菌液上,并向下轻轻按压使菌液均匀扩散,然后盖上培养皿盖,在35℃恒温培养箱中培养24 h。共培养完成后,采用0.85%生理盐水清洗薄膜并进行10倍倍比稀释(本测试采用103、104和105 稀释倍数),各取100 μL稀释液均匀涂布于LB固体培养基,即倒平板,放于35℃恒温培养箱中静置培养24 h,拍照并记录菌落数。抗菌率计算:

    R=ABA×100% (2)

    其中:R为抗菌率;A为空白样菌浓度(未加抗菌剂的纯PA612薄膜);B为样品的菌浓度。菌浓度(CFU/mL)计算方式:菌落数×稀释倍数×10 (0.1 mL涂布)。

    ZnO和m-ZnO的FTIR图谱如图1所示,在ZnO图谱中,3000~3700 cm−1处的宽峰对应—OH的伸缩振动,1636 cm−1处的宽峰代表纳米颗粒表面吸附的水分子导致的—OH的弯曲振动,在500 cm−1附近检测到的峰,归因于Zn—O的伸缩振动[21]。 两个新峰2975 cm−1和2931 cm−1对应于KH550的碳氢拉伸振动峰。1016 cm−1处的峰是KH550醇解后羟基与纳米氧化锌表面的羟基缩合反应产生的Si—O—Zn拉伸振动峰[22]。上述结果表明KH550成功接枝到纳米氧化锌上。

    进一步地,可以通过SEM图像,直观评估m-ZnO/PA612纳米复合材料中纳米颗粒的分散,如图2所示,其中插入的图片为m-ZnO/PA612纳米复合材料的外观照片,可以看出,纳米ZnO包覆在薄膜内部。从SEM图像中可以看出 2wt%ZnO/PA612 (含2wt%未改性ZnO)表现出明显的颗粒团聚。与 2wt%ZnO/PA612相比,改性ZnO颗粒在PA612基体中的分散性要好得多。然而,m-ZnO的添加量相对较高(4wt%和6wt%)时,由于纳米颗粒的大比表面积,在断裂表面出现了轻微的团聚(图中圆圈)。综上所述,偶联KH550可以有效提高纳米ZnO 在PA612基体中的分散性,但随着 m-ZnO 含量增加至4wt%,纳米颗粒会部分团聚。

    图  1  ZnO和m-ZnO的FTIR光谱
    Figure  1.  FTIR spectra of ZnO and m-ZnO
    图  2  ZnO含量2wt%和不同m-ZnO含量的PA612纳米复合材料的脆断截面SEM图像及外观图片
    Figure  2.  Fracture cross section SEM images and appearance pictures of PA612 nanocomposites with different m-ZnO contents and ZnO content 2wt%

    2wt%m-ZnO/PA612的SEM图像如图3所示,对应的EDX光谱证实了2wt%m-ZnO/PA612的化学成分,在锌元素和氧元素处有两个尖锐的信号峰。此外,还观察到氮和硅元素的信号峰,这可能是由于接枝KH550的存在,这也印证了KH550的成功接枝。从图3中的EDX映射图像可以看出,Zn元素分布均匀,表明m-ZnO均匀地分布在纳米复合膜中。

    图  3  2wt%m-ZnO/PA612的SEM图像和EDX映射元素Zn、Si、N和O图谱
    Figure  3.  SEM images of 2wt%m-ZnO/PA612 and EDX mapping elements Zn, Si, N and O

    图4显示了PA612及其纳米复合材料的熔融结晶行为。图4(a)中m-ZnO/PA612纳米复合材料的熔融峰温度(Tm)与纯PA612相比都略微下降。从图4(b)中可以观察到m-ZnO/PA612纳米复合材料的结晶峰温度(Tc)都向较高的值移动。这些结果表明,在结晶过程中,m-ZnO的存在有助于促进晶体的成核。

    图  4  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC图谱:(a) 升温;(b) 降温
    Figure  4.  DSC curves of PA612 and PA612 nanocomposites with different m-ZnO contents: (a) Heating procedure; (b) Cooling procedure

    表2列出了PA612及其纳米复合材料的TcTm、熔融焓(∆Hm)、结晶度(Xc)。可见,m-ZnO/PA612纳米复合材料的结晶度均高于纯PA612,在m-ZnO添加量为2wt%时,其结晶度相较于纯PA612提高了4.1%,可见m-ZnO的加入可以促进PA612结晶,这是由于m-ZnO具有异相成核的作用[23]。然而,m-ZnO/PA612纳米复合材料的结晶度随m-ZnO含量的增加先增大后有所下降。这是由于随着m-ZnO含量增大,产生了部分团聚,降低了其成核作用[24]

    表  2  PA612及不同m-ZnO含量的PA612纳米复合材料的DSC热分析数据
    Table  2.  DSC thermal analysis data of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleTm/℃Tc/℃ΔHm/(J·g−1)Xc/%
    PA612222.86186.2661.2223.73
    0.5wt%m-ZnO/PA612220.37187.0970.6827.53
    2wt%m-ZnO/PA612221.67187.3470.3627.83
    4wt%m-ZnO/PA612221.29186.9966.9926.93
    6wt%m-ZnO/PA612220.97186.1465.6126.88
    Notes: Tm—Melting peak temperature; Tc—Crystallization peak temperature; △Hm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV 
    | 显示表格

    m-ZnO/PA612纳米复合材料的XRD图谱如图5所示。PA612中观察到2θ=21°的衍射峰,对应于PA612的γ晶型[25]。与纯PA612相比,m-ZnO/PA612纳米复合材料的衍射峰没有明显的位移或变化,表明m-ZnO的加入对PA612的晶型结构没有影响。

    图  5  PA612及不同m-ZnO含量的PA612纳米复合材料的XRD图谱
    Figure  5.  XRD patterns of PA612 and PA612 nanocomposites with different m-ZnO contents

    通过热重分析(TGA)研究了m-ZnO含量对PA612热稳定性的影响,结果如图6所示。m-ZnO的加入对PA612纳米复合材料的热稳定性没有很大的影响。

    图  6  PA612及不同m-ZnO含量的PA612纳米复合材料的TGA热重曲线
    Figure  6.  TGA curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    表3列出了失重分别为5wt% (T5%)和 50wt% (T50%)时的温度及600℃ 时的残炭率。可以发现T5%几乎没有变化,表明无论 m-ZnO 含量如何,所有 PA612 纳米复合材料的热稳定性都较好。在PA612 基体中添加m-ZnO 后,T50%温度向较低温度移动。热稳定性的降低可能与高温下ZnO在增强型基质上的催化活性有关[26]。此外,ZnO 纳米粒子可以诱导聚合物-ZnO界面中周围碳的氧化分解[27]。随着m-ZnO 含量的增加,m-ZnO/PA612纳米复合材料在 600℃的炭产率逐渐增加。

    表  3  PA612及不同m-ZnO含量的PA612纳米复合材料的热稳定性
    Table  3.  Thermal stability of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleT5%/℃T50%/℃Char yield at 600℃/wt%
    PA612398.9450.02.3
    0.5wt%m-ZnO/PA612400.4446.02.7
    2wt%m-ZnO/PA612397.2443.03.5
    4wt%m-ZnO/PA612399.3446.74.7
    6wt%m-ZnO/PA612398.6446.37.8
    Notes: T5% and T50%—Temperature when the weight loss of the samples is 5wt% and 50wt%, respectively.
    下载: 导出CSV 
    | 显示表格

    PA612及其纳米复合材料的典型应力-应变曲线如图7所示。表4总结了拉伸应力、杨氏模量和断裂伸长率。可以看出所有试样的应力-应变曲线分为弹性、塑性变形和应变硬化3个区域。首先弹性区域具有可恢复变形的线性变化,在塑性变形区将形成颈部。随后应变硬化区出现应变硬化的现象。可见纳米氧化锌作为刚性填料改变了基体的应力场。

    图  7  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸应力-应变曲线
    Figure  7.  Tensile stress versus strain curves of PA612 and PA612 nanocomposites with different m-ZnO contents

    当添加2wt%m-ZnO时,m-ZnO/PA612纳米复合材料的拉伸强度达到最大值,与纯PA612相比提高了15%。随后拉伸强度有所下降。这是由于纳米氧化锌极高的表面能,当含量较高时,由于其较强的相互吸附作用,导致出现明显的团聚现象(图3),从而降低了m-ZnO/PA612势同拉伸强度一样,在m-ZnO含量为2wt%达到最大。m-ZnO/PA612纳米复合材料的断裂伸长率较PA612略有下降。这是由于纳米ZnO提高了m-ZnO/PA612纳米复合材料的结晶度,使材料变脆,此外m-ZnO在m-ZnO/PA612基体中会引起应力集中,从而使其韧性变差。

    m-ZnO/PA612纳米复合膜的透光率和雾度如图8所示。随着m-ZnO含量的增加,复合膜的透光率随之降低,雾度与之相反,这是由于纳米氧化锌在基体中团聚,会影响光的传输,从而产生光散射,导致透光率的降低。

    m-ZnO/PA612纳米复合膜对大肠杆菌的抗菌活性如图9所示,抗菌率数据列于表5。结果表明:m-ZnO的加入使PA612纳米复合材料具有抗菌活性。此外,随着m-ZnO含量的增加,抗菌率逐渐增大,在m-ZnO含量达到4wt%时,其抗菌率达到93.25%。这些结果可以归结为纳米氧化锌具有优越的抗菌性能。对于ZnO抗菌机制的研究比较成熟,主要解释为两种,金属离子溶出机制和光催化反应机制[28]。当有紫外光照射时,会在ZnO纳米结构的表面形成电子空穴对,这些电子和空穴经过与水分子和氧分子反应生成活性氧,能降解大多数微生物中的有机物,从而杀死细菌,而ZnO粒径大小决定了光催化反应效率,其抗菌活性随粒径减小而增大。2wt%ZnO/PA612在尼龙基体中团聚使其相对粒径增大,2wt%m-ZnO/PA612在尼龙基体中较2wt%ZnO/PA612分散更好,从而使其抗菌效果更佳。因此2wt%m-ZnO/PA612对大肠杆菌的抗菌率远远大于2wt%ZnO/PA612。

    表  4  PA612及不同m-ZnO含量的PA612纳米复合材料的拉伸性能
    Table  4.  Tensile properties of PA612 and PA612 nanocomposites with different m-ZnO contents
    SampleTensile stress/MPaYoung’s modulus/MPaElongation at break/%
    PA612 93.95±5.55 685.11±50.97 392.77±13.70
    0.5wt%m-ZnO/PA612 93.06±4.56 543.66±39.20 378.30±11.08
    2wt%m-ZnO/PA612 108.13±1.76 889.70±60.78 305.23±10.13
    4wt%m-ZnO/PA612 84.31±8.35 422.97±94.12 371.85±27.97
    6wt%m-ZnO/PA612 83.06±10.85 486.79±71.10 325.38±32.66
    下载: 导出CSV 
    | 显示表格
    图  8  PA612及不同m-ZnO含量的PA612纳米复合材料的光学性能
    Figure  8.  Optical properties of PA612 and PA612 nanocomposites with different m-ZnO contents
    图  9  PA612及不同m-ZnO含量的PA612纳米复合材料对大肠杆菌的抗菌测试结果照片
    Figure  9.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Escherichia coli
    表  5  PA612及不同m-ZnO含量的PA612纳米复合材料膜对大肠杆菌的抑菌活性
    Table  5.  Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Escherichia coli
    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial rate R/%
    PA6125.48×106 0.00
    0.5wt%m-ZnO/PA6123.89×10629.01
    2wt%ZnO/PA6121.43×10673.91
    2wt%m-ZnO/PA6125.30×10590.33
    4wt%m-ZnO/PA6123.70×10593.25
    6wt%m-ZnO/PA6122.50×10595.44
    下载: 导出CSV 
    | 显示表格

    m-ZnO/PA612纳米复合膜对金黄色葡萄球菌的抗菌活性如图10所示,抗菌率数据列于表6。结果表明:同纳米抗菌复合膜对大肠杆菌的抗菌活性相似,随着m-ZnO含量的增加,m-ZnO/PA612纳米复合膜对金黄色葡萄球菌的抗菌率逐渐增大,在m-ZnO含量达到4wt%时,其抗菌率达到90%以上,在m-ZnO含量较高时,m-ZnO/PA612纳米复合薄膜对大肠杆菌的抑菌效果优于金黄色葡萄球菌。这可能是由于革兰氏阳性菌金黄色葡萄球菌的肽聚糖膜比革兰氏阴性菌大肠杆菌厚得多[29]

    图  10  PA612及不同m-ZnO含量的PA612纳米复合材料对金黄色葡萄球菌的抗菌测试结果照片
    Figure  10.  Photos of antibacterial test results of PA612 and PA612 nanocomposites with different m-ZnO contents against Staphylococcus aureus
    表  6  PA612及不同m-ZnO含量的PA612纳米复合材料膜对金黄色葡萄球菌的抑菌活性
    Table  6.  Antibacterial activity of PA612 and PA612 nanocomposites with different m-ZnO contents membranes against Staphylococcus aureus
    SampleBacteria concentration/
    (CFU·mL−1)
    Antibacterial
    rate R/%
    PA6125.35×106 0.00
    0.5wt%m-ZnO/PA6123.60×10632.71
    2wt%ZnO/PA6121.73×10667.66
    2wt%m-ZnO/PA6129.40×10582.43
    4wt%m-ZnO/PA6124.80×10591.03
    6wt%m-ZnO/PA6123.60×10593.27
    下载: 导出CSV 
    | 显示表格

    (1) 利用γ-氨丙基三乙氧基硅烷偶联剂(KH550)改性纳米ZnO颗粒(m-ZnO),SEM观察发现未改性纳米ZnO在尼龙612 (PA612)基体中出现较大团聚,而m-ZnO纳米粒子在PA612基体中均分散良好。

    (2) m-ZnO作为成核剂可以促进PA612的结晶,m-ZnO添加量为2wt%时,结晶度提高了4.1%。m-ZnO的存在对PA612热稳定性的影响较小。

    (3) 适量m-ZnO的加入对PA612有增强作用,在m-ZnO添加量为2wt%时,PA612纳米复合材料的拉伸强度较纯PA612提高了15%。

    (4) m-ZnO的加入使PA612对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌大肠杆菌都具有抗菌活性,在m-ZnO添加量超过4wt%时,对金黄色葡萄球菌和大肠杆菌的抗菌率均达到90%以上。

    (5) 通过挤出流延法制得的半生物基PA612纳米复合抗菌薄膜不但具有良好的抗菌性能和热稳定性能,且力学性能优良,加工工艺简单,有利于工业化生产,在食品、药品等包装领域有一定的应用前景。

  • 图  1   GO@sand的制备过程

    Figure  1.   Preparation Process of GO@Sand

    图  2   吸附在砂表面的GO量随时间的变化曲线

    Figure  2.   Adsorption curve of GO on the sand

    图  3   标准砂的光学图片(a)、SEM图像(b)和EDS图谱(c);10 h-GO@sand的光学图片(d)、SEM图像(e)和EDS图谱(f)

    Figure  3.   Optical images of standard sand (a), SEM images (b), and EDS spectra (c); Optical images of 10 h-GO@sand (d), SEM images (e), and EDS spectra (f)

    图  4   标准砂和10 h-GO@sand的FTIR图谱

    Figure  4.   FTIR spectra of standard sand and 10 h-GO@sand

    图  5   标准砂和10 h-GO@sand的Raman图谱

    Figure  5.   Raman plots of standard sand and 10 h-GO@sand

    图  6   GO@sand浸入去离子水(左)和水泥孔隙溶液(右)的照片:(a)摇晃前;(b)摇晃后

    Figure  6.   Photographs of GO@sand immersed in deionised water (left) and cement pore solution (right): (a) Before shaking; (b) After shaking

    图  7   包覆在砂表面的GO对水泥砂浆的流动度的影响

    Figure  7.   Effect of GO coated on the sand on the fluidity of cement motars

    图  8   不同GO掺量的GO@sand改性水泥砂浆试件的抗压强度(a)和抗折强度(b)耐蚀系数

    Figure  8.   Compressive strength (a) and flexural strength (b) corrosion resistance coefficients of GO@sand modified cement mortar specimens with different GO dosages

    图  9   不同GO掺量的 GO@sand改性水泥砂浆的抗渗压力和抗渗压力比

    Figure  9.   Seepage pressure and seepage pressure ratio of GO@sand modified cement mortar with different GO dosages

    图  10   砂浆样品Z1((a)、(b))和Z3((c)、(d))的SEM图像

    Figure  10.   SEM images of mortar samples Z1 ((a), (b)) and Z3 ((c), (d))

    图  11   不同GO掺量的GO@sand改性水泥砂浆养护28 d后的XRD图谱

    Figure  11.   XRD patterns of GO@sand-modified cement mortars with different GO dosages after 28 d curing

    表  1   水泥的物理性能

    Table  1   Physical properties of cement

    Stability/mm Fineness/% Density/(g·mm−3) Specific Surface
    Area/(m2·kg−1)
    Standard
    Consistency/%
    Coagulation Time /min
    Initial coagulation Final coagulation
    0.50 0.60 3.15 350 25.60 132 198
    下载: 导出CSV

    表  2   水泥化学成分

    Table  2   Chemical composition of cement

    MineralAl2O3SiO2Fe2O3CaOMgOSO3NaOf-CaOC3SC2SC3AC4AF
    Content/wt%4.4721.53.3765.843.180.30.490.7858.9220.198.128.21
    Note: f-CaO−Free calcium oxide.
    下载: 导出CSV

    表  3   GO@sand改性水泥砂浆配合比

    Table  3   Mix ratio of GO@sand modified cement mortar

    SampleCement/gPCE/gWater/gSand/gGO/%
    Z1(0 h-GO@sand)4501.51711350 g0
    Z2(5 h-GO@sand)4501.51711350 g0.015
    Z3(10 h-GO@sand)4501.51711350 g0.024
    Z4(15 h-GO@sand)4501.51711350 g0.028
    Notes: ①—Cement mortar specimens prepared by substituting standard sand with xh-GO@sand(stirred for x hours of GO@sand); ②—Dosage of GO was calculated as the weight percentage of the cement.
    下载: 导出CSV

    表  4   GO@sand对水泥砂浆抗折抗压强度影响

    Table  4   Effect of GO@sand on flexural and compressive strength of cement mortar

    SampleFlexural strength (MPa)/growth rate (%)Compressive strength (MPa)/growth rate (%)
    3 d28 d3 d28 d
    Z15.6/06.8/034.7/042.5/0
    Z26.7/19.647.8/14.7141.7/20.2143.7/2.82
    Z36.9/23.218/17.6545.5/31.1247.5/11.76
    Z46.6/17.867.3/7.3545.4/30.8446.2/8.71
    下载: 导出CSV

    表  5   GO改性砂浆28 d抗压抗折强度的文献比较分析

    Table  5   Comparative literature analysis of 28 d compressive and flexural strength of GO modified mortar

    Ref. GO/% Change rate of compressive strength/% Change rate of flexural strength/%
    28 d
    This word 0.024 11.76 17.65
    [14] 0.03 3.2 19.4
    [34] 0.06 14.04 9.2
    [35] 0.05 18 17
    [36] 0.04 7.15 4.69
    [37] 0.08 13.6 11.61
    [38] 0.04 3.33 /
    下载: 导出CSV
  • [1] 李少飞, 魏智强, 乔宏霞, 等. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2024: 1–22.

    LI Shaofei, WEI Zhiqiang, QIAO Hongxia, et al. Research progress on properties of polymer cement-based composites modified by nano-graphene oxide[J]. Materials Review, 2024: 1-22(in Chinese).

    [2]

    Tam VWY, Gao XF, Tam CM. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research, 2005, 35(6): 1195-1203. DOI: 10.1016/j.cemconres.2004.10.025

    [3]

    Kucharczyková B, Keršner Z, Pospíchal O, et al. The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 30: 761-766. DOI: 10.1016/j.conbuildmat.2011.12.067

    [4]

    Shen D, Feng Z, Zhu P, et al. Effect of pre-wetted lightweight aggregates on residual stress development and stress relaxation in restrained concrete ring specimens[J]. Construction and Building Materials, 2020, 258: 119151. DOI: 10.1016/j.conbuildmat.2020.119151

    [5]

    Lyu K, Sun B, Liu X, et al. Evaluation of the ITZ modification efficiency via aggregate surface coating with nano SiO2 (NS) and its influence on properties[J]. Case Studies in Construction Materials, 2022, 17: e01488. DOI: 10.1016/j.cscm.2022.e01488

    [6] 王宝民, 姜瑞双, 赵汝英. 石墨烯的分散性及石墨烯水泥基复合材料的研究进展[J]. 混凝土, 2016, (12): 68-72+75. DOI: 10.3969/j.issn.1002-3550.2016.12.018

    WANG Baomin, JIANG Ruishuang, ZHAO Ruying. Research progress of the dispersibility of graphene and graphene cement-based composite materials[J]. Concrete, 2016, (12): 68-72+75(in Chinese). DOI: 10.3969/j.issn.1002-3550.2016.12.018

    [7] 高飞, 田宝振, 张晔, 等. 石墨烯掺配水泥材料及其应用研究进展[J]. 山东化工, 2024, 53(2): 127-130,133.

    GAO Fei, TIAN Baozhen, ZHANG Ye, et al. Progress of graphene blended cement materials and its application[J]. Shandong Chemical Industry, 2024, 53(2): 127-130,133(in Chinese).

    [8]

    Wei X-X, Pei C, Zhu J-H. Towards the large-scale application of graphene-modified cement-based composites: A comprehensive review[J]. Construction and Building Materials, 2024, 421: 135632. DOI: 10.1016/j.conbuildmat.2024.135632

    [9]

    Mukherjee K, Rajender A, Samanta AK. A review on the fresh properties, mechanical and durability performance of graphene-based cement composites[J]. Materials Today: Proceedings, 2023. In Press.

    [10] 吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报, 2014, 31(3): 644-652.

    Lv Shenghua, Sun Ting, Liu Jingjing, et al. Toughening effect and mechanism of graphene oxide nanoflakes on cementitious composites[J]. Library Theory and Practice, 2014, 31(3): 644-652(in Chinese).

    [11] 张婷婷, 王荣政, 孔祥清, 等. 石墨烯及其衍生物对水泥基复合材料性能的影响研究进展[J]. 混凝土与水泥制品, 2022, (11): 30-34.

    ZHANG Tingting, WANG Rongzheng, KONG Xiangqing, et al. Research progress on the effect of graphene and its derivatives on the properties of cementitious composites[J]. China Concrete and Cement Products, 2022, (11): 30-34(in Chinese).

    [12] 张瑞君, 陈国良, 宋春草, 等. 氧化石墨烯对再生砂超高性能混凝土力学及抗氯离子渗透性能的影响[J]. 无机盐工业, 2023: 1–9.

    ZHANG Ruijun, CHEN Guoliang, SONG Chuncao, et al. Influence of graphene oxide on the mechanical and chloride ion penetration resistance of ultra-high performance concrete with recycled sand[J]. Inorganic Chemicals Industry, 2023: 1-9(in Chinese).

    [13]

    Nguyen HD, Zhang Q, Sagoe-Crentsil K, et al. Graphene oxide-coated sand for improving performance of cement composites[J]. Cement and Concrete Composites, 2021, 124: 104279. DOI: 10.1016/j.cemconcomp.2021.104279

    [14] 袁小亚, 杨雅玲, 周超, 等. 氧化石墨烯改性水泥砂浆力学性能及微观机理研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(12): 36-42.

    YUAN Xiaoya, YANG Yaling, ZHOU Chao, et al. Mechanical properties and micro-mechanism of graphene oxide modified cement mortar[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2017, 36(12): 36-42(in Chinese).

    [15] 袁小亚, 高军, 王远贵, 等. 氧化石墨烯分散方式及其对水泥砂浆力学性能的影响[J]. 混凝土与水泥制品, 2020, (8): 18-22,26.

    YUAN Xiaoya, GAO Jun, WANG Yuangui, et al. Dispersion mode of graphene oxide and its effect on mechanical properties of cement mortar[J]. China Concrete and Cement Products, 2020, (8): 18-22,26(in Chinese).

    [16] 全国水泥标准化技术委员会. 水泥胶砂强度检验方法(ISO法)[J]. 2021.

    National Technical Committee for Cement Standardisation. Test method of cement mortar strength(ISO method)[J]. 2021(in Chinese).

    [17] 全国水泥制品标准化技术委员会. 混凝土外加剂匀质性试验方法[J]. 2012.

    National Technical Committee for the Standardisation of Cement Products. Methods for testing uniformity of concrete admixture[J]. 2012(in Chinese).

    [18] 普通混凝土长期性能和耐久性能试验方法标准[J]. 2009.

    Standard for test methods of long-term performance and durability of ordinary concrete[J]. 2009(in Chinese).

    [19] 建筑砂浆基本性能试验方法标准[J]. 2009.

    Standard for test method of basic properties of construction mortar[J]. 2009(in Chinese).

    [20]

    Lu D, Shi X, Zhong J. Nano-engineering the interfacial transition zone in cement composites with graphene oxide[J]. Construction and Building Materials, 2022, 356: 129284. DOI: 10.1016/j.conbuildmat.2022.129284

    [21]

    Jiao L, Seow JYR, Skinner WS, et al. Metal–organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27: 43-68. DOI: 10.1016/j.mattod.2018.10.038

    [22] 朱振亚, 王磊, 姜家良, 等. 纳米SiO2-氧化石墨烯/聚偏氟乙烯杂化膜的制备及特性[J]. 复合材料学报, 2018, 35(4): 785-792.

    Zhenya Zhu, Lei Wang, Jialiang Jiang, et al. Preparation and properties of nano SiO2-GO/polyvinylidene fluoride hybrid membrane[J]. Library Theory and Practice, 2018, 35(4): 785-792(in Chinese).

    [23] 袁小亚, 曾俊杰, 牛佳伟, 等. 不同减水剂对氧化石墨烯掺配水泥胶砂力学性能及微观结构的影响[J]. 功能材料, 2018, 49(10): 10184-10189. DOI: 10.3969/j.issn.1001-9731.2018.10.032

    YUAN Xiaoya, ZENG Junjie, NIU Jiawei, et al. Effect of different water-reducing agents on mechanical properties andmicrostructure of graphite oxide-blended cement mortar[J]. Journal of Functional Materials, 2018, 49(10): 10184-10189(in Chinese). DOI: 10.3969/j.issn.1001-9731.2018.10.032

    [24] 谢晓丹. 氧化石墨烯表面吸附态Pb(Ⅱ)在碱性环境中解吸附特征研究[D]. 2020.

    Xie Xiaodan, Desorption of Adsorbed Pb(II) on Graphene Oxide under Alkaline Conditions[D]. 2020. (in Chinese).

    [25]

    Hasanzadeh B, Liu F, Sun Z. Monitoring hydration of UHPC and conventional paste by quantitative analysis on Raman patterns[J]. Construction and Building Materials, 2016, 114: 208-214. DOI: 10.1016/j.conbuildmat.2016.03.178

    [26]

    Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. NATURE NANOTECHNOLOGY, 2013, 8(4): 235-246. DOI: 10.1038/nnano.2013.46

    [27]

    Lu D, Shi X, Wong HS, et al. Graphene coated sand for smart cement composites[J]. Construction and Building Materials, 2022, 346: 128313. DOI: 10.1016/j.conbuildmat.2022.128313

    [28]

    Birenboim M, Nadiv R, Alatawna A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites[J]. Composites Part B: Engineering, 2019, 161: 68-76. DOI: 10.1016/j.compositesb.2018.10.030

    [29] 罗素蓉, 李欣, 林伟毅, 等. 氧化石墨烯分散方式对水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(3): 677-684.

    LUO Su-rong, LI Xin, LIN Wei-yi, et al. Effect of Graphene Oxide Dispersion Method on Properties of Cement-based Materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 677-684(in Chinese).

    [30]

    Wang M, Yao H, Wang R, et al. Chemically functionalized graphene oxide as the additive for cement–matrix composite with enhanced fluidity and toughness[J]. Construction and Building Materials, 2017, 150: 150-156. DOI: 10.1016/j.conbuildmat.2017.05.217

    [31]

    Wang M, Yao H. Comparison Study on the Adsorption Behavior of Chemically Functionalized Graphene Oxide and Graphene Oxide on Cement[J]. Materials (Basel, Switzerland), 2020, 13(15): 3274. DOI: 10.3390/ma13153274

    [32] 王月, 赵思毅, 俞佩瑶. 氧化石墨烯及其分散方法对水泥基材料微观结构和力学性能的影响研究进展[J]. 功能材料, 2024, 55(3): 3023-3034. DOI: 10.3969/j.issn.1001-9731.2024.03.004

    WANG Yue, ZHAO Siyi, YU Peiyao. Progress in research on the effect ofgraphene oxide and its dispersionmethod on the microstructure and mechanical properties ofcement-based materials[J]. Journal of Functional Materials, 2024, 55(3): 3023-3034(in Chinese). DOI: 10.3969/j.issn.1001-9731.2024.03.004

    [33] 魏致强, 王远贵, 齐孟, 等. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047. DOI: 10.11896/cldb.20040258

    WEI Zhiqiang, WANG Yuangui, QI Meng, et al. The Synergistic Effect of Gallic Acid and Polycarboxylic Water-reducer on AqueousGO Dispersion and the Enhanced Mechanical Properties of Cement Mortar Composites[J]. Materials Reports, 2021, 35(10): 10042-10047(in Chinese). DOI: 10.11896/cldb.20040258

    [34] 刘文娟. 氧化石墨烯改性混凝土的制备及力学性能和抗冻性能的研究[J]. 功能材料, 2022, 53(8): 8159-8164. DOI: 10.3969/j.issn.1001-9731.2022.08.024

    LIU Wenjuan. Preparation of graphene oxide modified concrete and research on mechanical properties and freezing resistance[J]. Journal of Functional Materials, 2022, 53(8): 8159-8164(in Chinese). DOI: 10.3969/j.issn.1001-9731.2022.08.024

    [35] 王奕璇, 柴军瑞, 曹靖, 等. 多层氧化石墨烯-水泥基复合材料的力学性能与微观结构[J]. 应用力学学报, 2020, 37(2): 860-865,948. DOI: 10.11776/cjam.37.02.B114

    WANG Yixuan, CHAI Junrui, CAO Jing, et al. Mechanical properties and microstructure of multilayer graphene oxide-cement composites[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 860-865,948(in Chinese). DOI: 10.11776/cjam.37.02.B114

    [36] 袁小亚, 蒲云东, 桂尊曜, 等. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2023: 1–17.

    YUAN Xiaoya, PU Yundong, GUI Zunyao, et al. Effect of Hydroxylated Graphene on Properties of Fly Ash-cement Matrix Composites[J]. Materials Reports, 2023: 1-17.

    [37]

    Huang K, Jing H, Gao Y, et al. Study on the properties of graphene oxide reinforced cement-based materials at high temperature[J]. Construction and Building Materials, 2024, 421: 135704. DOI: 10.1016/j.conbuildmat.2024.135704

    [38]

    Prasuna B, Ravella DP. Durability assessment of high-performance concretes containing graphene oxide[J]. Materials Today: Proceedings, 2022, 60: 526-533(in Chinese). DOI: 10.1016/j.matpr.2022.01.427

    [39] 齐孟. 木质素磺酸钠分散水性石墨烯及其对水泥基材料的性能研究[D]. 2023.

    Qi Meng. Study on Waterborne Graphene Dispersedby Sodium Lignosulfonate and itsPerformance on Cement-based Materials [D]. 2023(in Chinese).

  • 期刊类型引用(6)

    1. 耿乾浩,徐晓云,李冰晶. 矿用聚氨酯注浆材料反应热控制技术研究进展. 化工进展. 2025(01): 319-328 . 百度学术
    2. 吴连锋,朱洪宇,申小松,朱艳吉,汪怀远. 1, 5-萘二酚改性环氧树脂及其氮化硼复合材料的制备与导热性能. 中国表面工程. 2024(01): 110-117 . 百度学术
    3. 杨承伟,王玉斌,傅伟强,王煦. 纳米材料改性聚对苯二甲酸乙二醇酯的研究进展. 塑料科技. 2024(01): 112-116 . 百度学术
    4. 王世民,温变英. 模压氮化硼/聚对苯二甲酸乙二醇酯复合材料的导热机制与散热效果. 复合材料学报. 2023(01): 160-170 . 本站查看
    5. 石贤斌,张帅,陈超,聂向导,班露露,赵亚星,刘仁,桑欣欣. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用. 复合材料学报. 2023(08): 4558-4567 . 本站查看
    6. 郑舒方,王玉印,郭兰迪,靳玉岭. 具有三维连续网络结构的聚合物基导热复合材料研究进展. 复合材料学报. 2023(12): 6528-6544 . 本站查看

    其他类型引用(8)

  • 其他相关附件

  • 目的 

    水泥基材料作为建筑领域的核心材料,其微观结构,尤其是界面过渡区(ITZ),对材料的力学性能和耐久性起着至关重要的作用。传统的水泥砂浆和混凝土由于ITZ的薄弱性,存在诸多性能限制。近年来,纳米材料的引入为改善ITZ提供了新的可能性,其中氧化石墨烯(GO)因其独特的物理化学特性而备受关注。本研究旨在探索氧化石墨烯(GO)直接附着在砂粒表面形成GO@sand的方法,以改善水泥砂浆的界面过渡区(ITZ),从而提高水泥基材料的力学性能和耐久性。研究的目的是简化传统GO分散系统的复杂性,降低成本,同时显著提升水泥砂浆的性能。

    方法 

    研究中通过超声法配置GO悬浮液。将清洗后的砂在GO悬浮液中搅拌不同时间,以获得不同吸附量的GO@sand。通过煅烧法测定GO吸附量,并采用SEM、EDS、FTIR光谱和Raman光谱对GO@sand进行微观结构分析,研究GO与砂之间的相互作用。用水泥孔隙溶液对GO@sand进行浸泡已模拟水泥砂浆混合过程,研究GO在砂表面的吸附稳定性。将不同GO吸附量的砂分别用来制备水泥砂浆试件,然后进行流动度测试、抗压强度和抗折强度测试、抗硫酸盐侵蚀性能测试以及抗渗性能测试,探究GO吸附量对水泥砂浆性能的影响情况。

    结果 

    实验结果表明,GO纳米片可以牢牢地吸附在砂粒表面,并且随着搅拌时间的增加,GO的吸附量呈现出先增加后稳定的趋势,当搅拌时长为12h时,吸附量达到最大值0.093mg/g。与基准试件相比,GO@sand的掺入会对水泥砂浆的流动性造成一定程度的负面影响,但是对其力学性能和耐久性能都有较大提升。特别是当GO掺量达到0.024wt%时,水泥砂浆的3d抗压强度和抗折强度分别提高了31.12%和23.21%,28d抗压强度和抗折强度分别提升了11.76%和17.65%;砂浆抗渗压力提高了140%,抗硫酸盐侵蚀性能也有较大提升。这表明在砂粒表面吸附适量的GO能够显著增强水泥砂浆的性能。通过微观结构分析,水泥砂浆的力学性能和耐久性能的提升归因于GO对ITZ区域微观结构的改善,GO纳米片加速了ITZ区域的水泥水化进程、提高水化产物含量,增强ITZ的密实度,抑制微裂纹的扩展,从而增强水泥砂浆的力学性能和耐久性能。

    结论 

    本研究成功地通过在砂粒表面吸附GO来制备GO@sand,显著提升了水泥砂浆的力学性能和耐久性。GO@sand的制备方法工艺简单、成本较低,并且对水泥砂浆的性能提升效果显著。研究结果表明,适量的GO吸附可以显著增强水泥砂浆的早期和长期强度,提高其耐久性能。此外,GO@sand的应用为实现高性能水泥基材料的设计与制备提供了新的策略,本方法可推广到其他水泥基材料。未来研究将进一步探索不同掺量和不同类型的纳米材料对水泥基材料性能的影响,以及这些材料在实际工程中的应用潜力。

  • 水泥基材料作为建筑领域的核心材料,其微观结构,尤其是界面过渡区(ITZ),对材料的力学性能和耐久性起着至关重要的作用。传统的水泥砂浆和混凝土由于ITZ的薄弱性,存在诸多性能限制。近年来,纳米材料的引入为改善ITZ提供了新的可能性,其中氧化石墨烯(GO)因其独特的物理化学特性而备受关注。

    本研究创新性地提出将GO直接附着在砂粒表面,形成GO@sand,这一方法避免了传统GO分散系统的复杂性,简化了工艺流程,降低了成本。通过将GO@sand与去离子水和水泥孔隙溶液混合后的稳定性测试,证明了GO在砂表面的牢固吸附,并且通过实验测出了GO在砂表面的最大吸附量。通过GO@sand的引入,本研究显著改善了水泥砂浆的ITZ,加速了水泥水化进程,提高了水化产物含量,增强了ITZ的密实度,有效抑制了微裂纹的扩展。研究结果显示,当GO掺量为0.024%时,可以显著改善水泥砂浆的力学性能和耐久性能,相比基准试件,3d抗压强度和抗折强度分别提高了31.12%、23.21%;28d抗压强度和抗折强度也提高了11.76%、17.65%;砂浆抗渗压力提高了140%,抗硫酸盐侵蚀性能也有较大提升。本研究凸显了GO@sand在水泥基材料中应用的巨大潜力,为实现高性能水泥基材料的设计与制备提供了新的策略。

    GO@sand示意图(左)和GO@sand对水泥砂浆抗渗性的影响(右)

图(11)  /  表(5)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  52
  • PDF下载量:  7
  • 被引次数: 14
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-07-31
  • 录用日期:  2024-08-24
  • 网络出版日期:  2024-09-03
  • 刊出日期:  2025-06-14

目录

/

返回文章
返回