复合管状结构中超声导波的位移分布
DISPLACEMENT DISTRIBUTION OF LONGITUDINAL GUIDED WAVES IN COMPOSITE PIPES
-
摘要: 对超声纵向导波在复合管状结构中的传播特性进行了分析。然后分析了系统中的位移分布,以此确定了各模式检测管材的最佳频厚积范围和检测的最佳位置。结果表明,各模式的径向和轴向位移在管内壁上的值较大,而在管壁中间和管外壁上的值较小;当频厚积增大到一特定值后,管壁中间和管外壁上的径向和轴向位移都近似为零,此特定值随模式阶次的提高而增加。选取各模式检测的频厚积时,应尽可能的选径向位移较小而轴向位移较大的频厚积点。Abstract: The propagation characteristic of ultrasonic longitudinal guided waves in composite pipes is investigated. The dispersion characteristics were computed on the assumption that the frequency is a real number and the wavenumber is a complex number. The displacement amplitude component distributions were analyzed in a two-layer system. The optimal location, optimal mode and its frequency-thickness products of testing were chosen by the displacement amplitude component distributions. The results show that the values of the radial and axial displacements of guided waves are larger at the inner wall than those at the middle and outer walls of a two-layer composite pipe. When frequency-thickness products increase to a certain value, which will increase with the increasing of the order of mode, the radial and axial displacements approach zero. It should be the choice of frequency-thickness products where there are smaller radial displacement and larger axial displacement in testing of guided wave modes.