温湿度养护环境对CFRP-钢板界面粘结性能的影响

Influence of temperature and humidity curing environments on the bonding performance of CFRP-steel plate interfaces

  • 摘要: 为了揭示温湿度共同养护作用下对CFRP粘贴钢板界面破坏模式和剥离机制的影响,本文通过CFRP-钢双剪粘结试验,综合考虑温度、湿度、粘结长度和胶层厚度多因素对CFRP-钢板界面粘结性能的影响,采用3D-DIC技术获得CFRP板表面的应变场,分析了静载拉伸过程中CFRP-钢粘结界面力学性能及破坏过程。研究结果表明:在60℃与60%相对湿度养护条件下粘结峰值荷载较高;低温和高湿环境都更易导致钢-胶界面失效;温度升高和湿度增加均会导致界面剪应力峰值降低与滑移量增加;粘结长度的增加有助于更广泛分散区域应力,而较薄(0.5 mm)的胶层有助于提高界面剪应力峰值和改善应力分布。最后,基于试验数据通过平滑法得到了简化的三折线剪切-滑移模型,为CFRP加固钢板结构的工程应用提供了理论支持和设计参考。

     

    Abstract: To investigate the impact of combined temperature and humidity curing conditions on the failure modes and delamination mechanisms of CFRP-bonded steel interfaces, this study conducted double-shear bonding tests on CFRP-steel composites, considering multiple factors such as temperature, humidity, bonding length, and adhesive layer thickness. The influence on the interfacial bonding performance of CFRP-steel interfaces was analyzed comprehensively, and the axial strain distribution of CFRP during static tensile processes was monitored using 3D-DIC technology. The findings reveal that peak bonding load is higher under curing conditions of 60℃ and 60% relative humidity, whereas low temperature and high humidity environments are more prone to cause failure at the steel-adhesive interface. Both increased temperature and humidity resulted in a reduction in interfacial shear stress peak values and an increase in slip, illustrating the impact of temperature and humidity on the ductility and adhesive properties of the interface. Additionally, it was found that an increase in bonding length helps disperse stress across a wider area, and a thinner adhesive layer contributes to higher interfacial shear stress peaks and improved stress distribution. Lastly, based on the experimental data, a simplified trilinear shear-slip model was derived using the smoothing method, providing theoretical support and design reference for the engineering application of CFRP-reinforced steel structures.

     

/

返回文章
返回