Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate 复合材料的协同抑菌性能

Synergistic antibacterial properties of Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate composites

  • 摘要: 随着耐药细菌的快速增长,有机抑菌剂已无法满足社会公共卫生需求,高活性复合抑菌剂不仅可以保留单组分的性质,还可以显示出更加优异的抑菌性能,因而成为抑菌材料的重要研究方向。本研究通过制备纳米Cu2S材料,然后与3-(苯并噻唑-2-巯基)丙烷磺酸钠反应,制备出结构新颖的Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate(Cu2S@SBPF)材料,采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外可见分光光度计(UV-vis)、傅里叶变换红外光谱仪(FT-IR)及X射线光电子能谱分析仪(XPS)等测试手段对样品的微观形貌、结构、元素组成等进行表征,探究了该复合材料对革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)的抑菌性能。结果表明,浓度为500 µg/mL的复合材料在60 min时对E. coliS. aureusT-Salmonella的抑菌率均达到99.99%且对E. coli最为敏感。抑菌机制表明,该复合材料能破坏细菌的细胞壁进入细菌内部,抑制细菌呼吸,最终使细菌死亡。这一成果有望为解决细菌耐药问题提供新的方案。

     

    Abstract: With the rapid growth of drug-resistant bacteria, organic bacteriostatic agents have been unable to meet the needs of social public health. High-activity composite bacteriostatic agents can not only retain the properties of single components, but also show more excellent antibacterial properties, thus becoming an important research direction of antibacterial materials. In this study, a novel structure Cu2S@Sodium 3-(benzothiazol-2-ylthio)-1-propanesulfonate (Cu2S@SBPF) material, Transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet visible spectrophotometer (UV-vis), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy analyzer (XPS) were used to characterize the micromorphology, structure and elemental composition of the samples. The antibacterial properties of the composite against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and drug-resistant bacteria T-Salmonella were investigated. The results showed that the antibacterial rate of the composite at the concentration of 500 µg/mL to E. coli, S. aureus and T-Salmonella reached 99.99% at 60 min, and the composite was the most sensitive to E. coli. The antibacterial mechanism showed that the composite material could destroy the cell wall of bacteria into the interior of bacteria, inhibit bacterial respiration, and eventually cause bacterial death. This result is expected to provide a new solution to solve the problem of bacterial drug resistance.

     

/

返回文章
返回