卵形弹丸撞击下FRP层合板的侵彻和穿透
Penetration and perforation of FRP laminates under normal impact by ogival-nosed projectiles
-
摘要: 研究了卵形弹丸撞击下FRP层合板的侵彻和穿透性能, 在局部化破坏模式假定的基础上改进了Wen提出的能量简化分析模型。改进模型仍假设弹体在侵彻过程中表面所受靶体的平均压力由靶体材料弹塑性变形所引起的静态阻力和速度效应引起的动阻力两部分组成, 认为侵彻过程中靶体对弹的阻力不再是一个常数, 而是与侵彻速度相关的函数。同时针对不同厚度靶板的破坏模式, 建立了几种不同的侵彻和穿透模型。通过弹头长度与靶板厚度的比较, 将侵彻过程分为部分侵彻和完全侵彻; 穿透过程分为薄板穿透和中厚板穿透。并且根据不同的破坏方式给出了求解卵形弹丸的侵彻深度、 残余速度和极限速度的预测公式。模型预测与实验数据进行了比较, 发现侵彻深度和弹道极限速度的理论预测值与实验数据吻合得很好。Abstract: The penetration and perforation of FRP laminates impacted by ogival-nosed projectiles at normal incidence were examined. Based on the assumption that the deformation is localized and that the mean pressure offered by the laminate targets to resist the projectiles can be decomposed into two parts: one part is a cohesive quasi-static resistive pressure due to the elastic-plastic deformation of the laminate materials and the other is a dynamic resistive pressure arising from velocity effects, a new formulation is developed by extending Wens model by assuming that the target resistance is no longer a constant, but a function of the penetration velocity. Equations are obtained for predicting the depth of penetration in the FRP laminate targets, the residual velocity and the ballistic limit in the case of perforation. It is shown that the theoretical predictions are in good correlation with available experimental data.