留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制

郭成 郝军杰 李明阳 龙红明 高翔鹏

郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7): 2140-2151. doi: 10.13801/j.cnki.fhclxb.20201015.003
引用本文: 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7): 2140-2151. doi: 10.13801/j.cnki.fhclxb.20201015.003
GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. doi: 10.13801/j.cnki.fhclxb.20201015.003
Citation: GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. doi: 10.13801/j.cnki.fhclxb.20201015.003

海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(Ⅵ)的吸附性能和机制

doi: 10.13801/j.cnki.fhclxb.20201015.003
基金项目: 国家自然科学基金 (51904004);中国博士后科学基金第66批面上资助项目(2019M662129);安徽省高校科学研究重点项目(KJ2019A0058)
详细信息
    通讯作者:

    高翔鹏,博士,副教授,硕士生导师,研究方向为多孔生物质金属离子吸附剂的合成制备及其机制 E-mail:gxp1992@ahut.edu.cn

  • 中图分类号: TB332

Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study

  • 摘要: 海藻酸钠(SA)是一种生物质材料,具有来源广泛、价格低廉的特性,被众多科研人员用于实验室研究,制备成吸附剂去除水溶液中的金属离子。但目前制备的大多数SA基吸附材料是实心水凝胶状,具有比表面积较低、吸附速率慢、吸附容量小的缺点。本研究以SA为基体,向其中添加碳酸钙和聚乙烯亚胺(PEI),以戊二醛为交联剂,经冷冻干燥后制备出多孔的SA/PEI凝胶球,探究其对水溶液中Cr(Ⅵ)的吸附特性。通过改变实验条件,研究pH值、Cr(Ⅵ)初始浓度、吸附温度、吸附时间等对SA/PEI凝胶球吸附性能的影响;引入吸附动力学和热力学模型对吸附过程进行分析;采用FTIR、Zeta电位、SEM、XPS对SA/PEI凝胶球合成及吸附Cr(Ⅵ)机制进行综合分析。结果表明,SA/PEI凝胶球对Cr(Ⅵ)的去除率与初始浓度呈负相关;该吸附过程符合拟二级动力学和Langmuir等温吸附模型,且该吸附反应是自发的吸热过程,在温度为318.15 K、pH值为2时,Langmuir等温吸附拟合所得最大吸附量为262.83 mg/g。SA/PEI凝胶球对Cr(Ⅵ)的吸附机制主要为静电作用导致的物理吸附。

     

  • 图  1  海藻酸钠/聚乙烯亚胺(SA/PEI)凝胶球的主要制备步骤

    Figure  1.  Major fabrication steps of sodium alginate/polyethyleneimine (SA/PEI) hydrogel beads

    图  2  pH值对SA/PEI凝胶球吸附Cr(Ⅵ)的影响

    Figure  2.  Effect of pH value on Cr(Ⅵ) uptake by SA/PEI hydrogel beads

    图  3  200 mg/L Cr(Ⅵ)在溶液中Cr(Ⅵ)离子形态的平衡分布

    Figure  3.  Equilibrium distribution of Cr(Ⅵ) species in aqueous with a total Cr(Ⅵ) concentration of 200 mg/L

    图  4  SA/PEI凝胶球在不同pH值下的Zeta电位

    Figure  4.  Zeta potential of SA/PEI hydrogel beads under various pH values

    图  5  温度和Cr(Ⅵ)浓度对SA/PEI凝胶球的Cr(Ⅵ)去除率的影响

    Figure  5.  Effects of temperature and Cr(Ⅵ) concentration on Cr(Ⅵ) removal rate by SA/PEI hydrogel beads

    图  6  不同浓度Cr(Ⅵ)溶液中Cr2O72−和HCrO4的含量

    Figure  6.  Percentage contents of Cr2O72− and HCrO4 in different concentrations of Cr(Ⅵ) aqueous

    图  7  吸附时间对SA/PEI凝胶球吸附Cr(Ⅵ)吸附量的影响

    Figure  7.  Effect of adsorption time on adsorption capacity of Cr(Ⅵ) by SA/PEI hydrogel beads

    图  8  SA/PEI凝胶球对Cr(Ⅵ)的吸附动力学

    Figure  8.  Adsorption kinetics of Cr(Ⅵ) by SA/PEI beads

    图  9  SA/PEI凝胶球对Cr(Ⅵ)的Langmuir和Freundlich等温吸附模型拟合

    Figure  9.  Fitting of Langmuir and Freundlich isotherm adsorption models for adsorption of Cr(Ⅵ) by SA/PEI hydrogel beads

    图  10  SA和SA/PEI凝胶球吸附Cr(Ⅵ)前后的FTIR图谱

    Figure  10.  FTIR spectra of SA and SA/PEI hydrogel beads before and after Cr(Ⅵ) adsorption

    图  11  SA/PEI凝胶球吸附Cr(Ⅵ)前((a)~(c))和后((d)~(f))的SEM图像及EDS图谱

    Figure  11.  SEM images and EDS spectra of SA/PEI hydrogel beads before ((a)−(c)) and after ((d)−(f)) Cr(Ⅵ) adsorption

    图  12  SA/PEI凝胶球吸附Cr(Ⅵ)前后的XPS图谱

    Figure  12.  XPS spectra of SA/PEI hydrogel beads before and after adsorption of Cr(Ⅵ)

    表  1  各类试剂及其性能

    Table  1.   Various reagents and properties

    ReagentProperty
    Sodium alginate Viscosity: 200−500 mPa.s
    Polyethyleneimine Molecular weight Mw=600
    Glutaraldehyde Purity 25%−28%
    CaCO3 Analytical reagent
    1,5-Diphenylcarbohydrazide Analytical reagent
    K2Cr2O7 Analytical reagent
    CaCl2 Analytical reagent
    下载: 导出CSV

    表  2  SA/PEI凝胶球吸附Cr(Ⅵ)的热力学参数

    Table  2.   Thermodynamic parameters of Cr(Ⅵ) adsorbed by SA/PEI hydrogel beads

    T/K$\ln {K_{\rm{c}}}$$\Delta G$/(kJ·mol−1)$\Delta H$/(kJ·mol−1)$\Delta S$/(J(mol·K)−1)
    298.15 1.83 −4.54 17.52 74.58
    308.15 1.98 −5.07
    318.15 2.45 −6.48
    Notes: T—Absolute temperature; Kc—Equilibrium constant; ΔG—Gibbs free energy; ΔH—Enthalpy change; ΔS—Entropy change.
    下载: 导出CSV

    表  3  SA/PEI凝胶球吸附Cr(Ⅵ)的动力学模型拟合参数

    Table  3.   Kinetic parameters of pseudo-first/second-order models for Cr(Ⅵ) adsorption by SA/PEI hydrogel beads

    C0/(mg·L−1)Pseudo-first-order kinetic modelPseudo-second-order kinetic model
    K1/(mg(g·h−1)−1)qe/(mg·g−1)R2K2/(mg(g·h−1)−1)qe/(mg·g−1)R2
    100 0.5829 91.3769 0.9900 0.0101 99.0000 0.9473
    200 0.5031 167.3778 0.9602 0.0036 191.4030 0.9433
    Notes: C0—Initial concentration of Cr(Ⅵ); K1, K2—Rate constants for pseudo-first-order and pseudo-second-order equations, respectively; qe—Amounts of metal adsorbed at equilibrium; R2—Goodness-of-fitting.
    下载: 导出CSV

    表  4  SA/PEI凝胶球去除Cr(Ⅵ)的Langmuir和Freundlich等温线模型参数

    Table  4.   Parameters of Langmuir and Freundlich isotherms on Cr(Ⅵ) removal by SA/PEI hydrogel beads

    T/KLangmuir isothermFreundlich isotherm
    KL/(L·mg−1)qm/(mg·g−1)R2KF/(L·mg−1)nR2
    298.15 0.1113 233.31 0.9587 71.24 4.2827 0.9337
    308.15 0.1286 242.07 0.9679 74.67 4.1841 0.9438
    318.15 0.1837 262.83 0.9826 99.09 4.8828 0.9077
    Notes: KL—Langmuir isotherm constant; KF, n—Two Freundlich isotherm constants; qm—Maximum metal uptake capacity.
    下载: 导出CSV

    表  5  SA/PEI凝胶球与已报道的SA基吸附剂去除Cr(Ⅵ)性能比较

    Table  5.   Comparison of adsorption capacity of Cr(Ⅵ) removal by SA/PEI hydrogel beads and others reported SA based adsorbents

    AdsorbentAdsorption capacity/(mg·g−1)Reference
    SA-polyaniline nanofibers 75.82 [16]
    TEPA functionalized alginate beads 77.00 [29]
    Nanoscale zerovalent iron/biochar/Ca-alginate beads 86.40 [30]
    Nano zero-valent iron/carbon/alginate composite gel 35.25 [31]
    Magnetic nano-hydroxyapatite encapsulated alginate beads 29.14 [32]
    Fe nanoparticles embedded graphene oxide alginate beads 33.90 [33]
    SA/PEI 262.83 This work
    下载: 导出CSV
  • [1] MARIA C G. Toxic and mutagenic effects of chromium(Ⅵ): A review[J]. Polyhedron,1996,15(21):3667-3689. doi: 10.1016/0277-5387(96)00141-6
    [2] CARLOS E B D, VIOLETA L L, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials,2012,223-224:1-12.
    [3] CESPONROMERO R M, YEBRABIURRUN M C, BERMEJOBARRERA M P. Preconcentration and speciation of chromium by the determination of total chromium and chromium(Ⅲ) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system[J]. Analytica Chimica Acta,1996,327(1):37-45. doi: 10.1016/0003-2670(96)00062-1
    [4] JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: A comprehensive review[J]. Chemosphere,2018,207:255-266. doi: 10.1016/j.chemosphere.2018.05.050
    [5] SARIN V, SINGH T S, PANT K K. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark[J]. Bioresource Technology,2006,97(16):1986-1993. doi: 10.1016/j.biortech.2005.10.001
    [6] FAN S, ZHOU J, ZHANG Y, et al. Preparation of sugarcane bagasse succinate/alginate porous gel beads via a self-assembly strategy: Improving the structural stability and adsorption efficiency for heavy metal ions[J]. Bioresource Technology,2020,306:123128. doi: 10.1016/j.biortech.2020.123128
    [7] FU F, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management,2011,92(3):407-418. doi: 10.1016/j.jenvman.2010.11.011
    [8] GAO X, LIU J, LI M, et al. Mechanistic study of selective adsorption and reduction of Au(Ⅲ) to gold nanoparticles by ion-imprinted porous alginate microspheres[J]. Chemical Engineering Journal,2020,385:123897. doi: 10.1016/j.cej.2019.123897
    [9] ZENG H, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal,2019,358:253-263. doi: 10.1016/j.cej.2018.10.001
    [10] HU Z H, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(Ⅱ) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. doi: 10.1016/j.ijbiomac.2017.11.171
    [11] LI Z, WANG Z, WANG C, et al. Preparation of magnetic resin microspheres M-P(MMA-DVB-GMA) and the adsorption property to heavy metal ions[J]. Applied Surface Science,2019,496:143708. doi: 10.1016/j.apsusc.2019.143708
    [12] YAN R, QIU Z, BIAN X, et al. Effective adsorption of antimony from aqueous solution by cerium hydroxide loaded on Y-tape molecular sieve adsorbent: Performance and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,604:125317. doi: 10.1016/j.colsurfa.2020.125317
    [13] MOHAMMED A, RIVERS A, STUCKEY D C, et al. Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology[J]. Carbohydrate Polymers,2020,245:116419. doi: 10.1016/j.carbpol.2020.116419
    [14] GAO X, LI M, ZHAO Y, et al. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads[J]. Chemical Engineering Journal,2019,378:122096. doi: 10.1016/j.cej.2019.122096
    [15] GAO X, ZHANG Y, ZHAO Y. Zinc oxide templating of porous alginate beads for the recovery of gold ions[J]. Carbohydrate Polymers,2018,200:297-304. doi: 10.1016/j.carbpol.2018.07.097
    [16] KARTHIK R, MEENAKSHI S. Removal of Cr(Ⅵ) ions by adsorption onto sodium alginate-polyaniline nanofibers[J]. International Journal of Biological Macromolecules,2015,72:711-717. doi: 10.1016/j.ijbiomac.2014.09.023
    [17] LIU B, HUANG Y. Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(Ⅵ) from water[J]. Journal of Materials Chemistry,2011,21(43):17413-17418. doi: 10.1039/c1jm12329g
    [18] MIRETZKY P, CIRELLI A F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials: A review[J]. Journal of Hazardous Materials,2010,180(1):1-19.
    [19] YAN Y, AN Q, XIAO Z, et al. Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(Ⅵ)[J]. Chemical Engineering Journal,2017,313:475-486. doi: 10.1016/j.cej.2016.12.099
    [20] 国家环境保护局. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB 7467—1987[S]. 北京: 中国标准出版社, 1987.

    State Department of Environmental Conservation. Water quality: Determination of chromium(Ⅵ): 1,5-Diphenylcarbohydrazide spectrophotometric method: GB 7467—1987[S]. Beijing: China Standards Press, 1987(in Chinese).
    [21] ZHANG W, WANG H, HU X, et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(Ⅵ) removal[J]. Journal of Cleaner Production,2019,231:733-745. doi: 10.1016/j.jclepro.2019.05.219
    [22] ZHANG W, ZHANG S, WANG J, et al. Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(Ⅵ) adsorption[J]. Chemosphere,2018,203:188-198. doi: 10.1016/j.chemosphere.2018.03.188
    [23] RAO R A K, KASHIFUDDIN M. Kinetics and isotherm studies of Cd(Ⅱ) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii)[J]. Applied Water Science,2014,4:371-383. doi: 10.1007/s13201-014-0153-2
    [24] LIAN L, GUO L, GUO C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite[J]. Journal of Hazardous Materials,2009,161(1):126-131. doi: 10.1016/j.jhazmat.2008.03.063
    [25] XU L Q, WAN D, GONG H F, et al. One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and “click chemistry”[J]. Langmuir,2010,26(19):15376-15382. doi: 10.1021/la102775y
    [26] GAO X, ZHANG Y, ZHAO Y. Biosorption and reduction of Au(Ⅲ) to gold nanoparticles by thiourea modified alginate[J]. Carbohydrate Polymers,2017,159:108-115. doi: 10.1016/j.carbpol.2016.11.095
    [27] 王磊, 白成玲, 朱振亚. 氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2020, 37(3):681-689.

    WANG L, BAI C L, ZHU Z Y. Adsorption properties and mechanism of Pb(Ⅱ) adsorbed by graphene oxide/sodium alginate composite membrane[J]. Acta Materiae Compositae Sinica,2020,37(3):681-689(in Chinese).
    [28] SUN Z, LIU Y, HUANG Y, et al. Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber[J]. Journal of Colloid and Interface Science,2014,434:152-158. doi: 10.1016/j.jcis.2014.07.036
    [29] OMER A M, KHALIFA R E, HU Z, et al. Fabrication of tetraethylenepentamine functionalized alginate beads for adsorptive removal of Cr(Ⅵ) from aqueous solutions[J]. International Journal of Biological Macromolecules,2019,125:1221-1231. doi: 10.1016/j.ijbiomac.2018.09.097
    [30] WAN Z, CHO D W, TSANG D C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate compositen[J]. Environmental Pollution,2019,247:410-420. doi: 10.1016/j.envpol.2019.01.047
    [31] WEN R, TU B, GUO X, et al. An ion release controlled Cr(Ⅵ) treatment agent: Nano zero-valent iron/carbon/alginate composite gel[J]. International Journal of Biological Macromolecules,2020,146:692-704. doi: 10.1016/j.ijbiomac.2019.12.168
    [32] PERIYASAMY S, GOPALAKANNAN V, VISWANATHAN N. Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(Ⅵ) uptake from water[J]. Journal of Environmental Chemical Engineering,2018,6(1):1443-1454. doi: 10.1016/j.jece.2018.01.007
    [33] LV X, ZHANG Y, FU W, CAO J, et al. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(Ⅵ) removal[J]. Journal of Colloid and Interface Science,2017,506:633-643. doi: 10.1016/j.jcis.2017.07.024
    [34] GAO X, GUO C, HAO J, et al. Selective adsorption of Pd(Ⅱ) by ion-imprinted porous alginate beads: Experimental and density functional theory study[J]. International Journal of Biological Macromolecules,2020,157:401-413. doi: 10.1016/j.ijbiomac.2020.04.153
    [35] 张继国, 王艳, 张琼, 等. 聚乙烯亚胺-羧甲基纤维素的合成及对金属离子的吸附性能[J]. 高分子材料科学与工程, 2005, 30(3):15-20.

    ZHANG J G, WANG Y, ZHANG Q, et al. Preparation of polyethyleneimine-carboxymethyl celluose and its adsorption properties for metal ions[J]. Polymer Materials Science & Engineering,2005,30(3):15-20(in Chinese).
    [36] SOLOMONS T G. Organic chemistry[M]. New York: Wiley Press Inc., 1980.
    [37] 杨庆, 梁伯润, 窦丰栋, 等. 以乙二醛为交联剂的壳聚糖纤维交联机理探索[J]. 纤维素科学与技术, 2005, 30(3):13-20.

    YANG Q, LIANG B R, DOU F D, et al. Exploration on cross-linking mechanism of chitosan fiber with glyoxal as cross-linking reagent[J]. Journal of Cellulose Science and Technology,2005,30(3):13-20(in Chinese).
    [38] MA Y, WANG A, LI J, et al. Preparation of hydroxyapatite with high surface area and dispersity templated on calcium carbonate in dipeptide hydrogels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,596:124740. doi: 10.1016/j.colsurfa.2020.124740
    [39] TIAN X, WANG W, WANG Y, et al. Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(Ⅵ)[J]. Microporous and Mesoporous Materials,2015,207:46-52. doi: 10.1016/j.micromeso.2014.12.031
    [40] OCIŃSKI D, JACUKOWICZ S I, KOCIOŁEK B E. Alginate beads containing water treatment residuals for arsenic removal from water: Formation and adsorption studies[J]. Environmental Science and Pollution Research,2016,23(24):24527-24539. doi: 10.1007/s11356-016-6768-0
    [41] AI Z, CHENG Y, ZHANG L, et al. Efficient removal of Cr(Ⅵ) from aqueous solution with Fe@Fe2O3 core-shell nanowires[J]. Environmental Science & Technology,2008,42(18):6955-6960.
    [42] MANNING B A, KISER J R, KWON H, et al. Spectroscopic investigation of Cr(Ⅲ)- and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science & Technology,2007,41(2):586-592.
    [43] SUN X F, MA Y, LIU X W, et al. Sorption and detoxification of chromium(Ⅵ) by aerobic granules functionalized with polyethylenimine[J]. Water Research,2010,44(8):2517-2524. doi: 10.1016/j.watres.2010.01.027
    [44] VIEIRA R S, MENEGHETTI E, BARONI P, et al. Chromium removal on chitosan-based sorbents: An EXAFS/XANES investigation of mechanism[J]. Materials Chemistry and Physics,2014,146(3):412-417. doi: 10.1016/j.matchemphys.2014.03.046
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  3092
  • HTML全文浏览量:  706
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 录用日期:  2020-10-10
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回