Fabrication of particle reinforced copper matrix composites by selective laser sintering
-
摘要: 利用选区激光烧结制备了亚微米WC-10%Co颗粒增强Cu基复合材料。利用X射线衍射仪、 扫描电镜及原子力显微镜表征了激光烧结试样的显微组织。结果显示: WC增强颗粒或部分熔化且圆滑化, 或完全熔化且原位析出; 与基体具有连续相容的冶金结合界面。 研究了工艺参数(激光功率、 扫描速率、 铺粉厚度)对烧结试样组织及性能的影响。结果表明, 增加激光功率能改善增强颗粒与基体的界面结合性能。激光扫描速率大于0.05m/s 时, 能提高增强颗粒分散均匀性。铺粉厚度降至0.30mm以下, 有利于提高烧结成形致密度。Abstract: The sub-micro WC-10%Co particle reinforced Cu matrix composites were prepared using selective laser sintering (SLS). The microstructures of the laser sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscope (AFM). It shows that the WC reinforcing particles are either partially melted and smoothened or completely melted and in situ precipitated, showing continuous and compatible metallurgical interfaces with the matrix. The effects of the processing parameters such as laser power, scan speed, and layer thickness on the microstructures and properties of the laser sintered samples were investigated. It shows that increasing the laser power leads to an improvement in the bonding ability between the reinforcing particles and the matrix. An increase in the scan speed above 0.05m/s results in a homogeneous distribution of the reinforcing particles. Reducing the layer thickness below 0.30mm permits a high densification of the laser sintered part.
-
-
计量
- 文章访问数: 2166
- HTML全文浏览量: 73
- PDF下载量: 1267