对流换热边界条件的多孔材料主动散热性能
Active heat dissipation of cellular materials with convection boundary conditions
-
摘要: 通过推导2种不同换热边界条件下平板夹层多孔材料的散热指标, 研究了考虑对流换热因素的平板夹层多孔材料主动散热性能, 得到了影响材料散热性能的因素。分析了在确定的相对厚度下, 不同构型多孔材料的相对密度与散热指标的关系, 并得出正六边形构型的散热指数最大。随着相对厚度的增大, 最大散热指标和最优相对密度增大较快, 当相对厚度大于20时, 最大散热指标和最优相对密度变化较小并最终趋于定值。由上述结果可以得到相对应的最小质量, 随着最小质量的增大, 最大散热指标增大并最终趋于定值。在相同的最大散热指标下, 随着表面换热系数比值的增大, 最小质量逐渐减小。最后考虑承载因素对结构进行了优化分析, 正六边形构型的多孔材料具有明显的综合性能优势。Abstract: The actively cooled performance of sandwich panel with cellular materials considering heat transfer factors was analyzed, and the thermal performance indexes of cellular materials with two different heat transfer boundary conditions were derived respectively, then the factors which impact the actively cooled performance were obtained. The relationship between optimal relative density and thermal performance index was analyzed in particular relative thickness, and the hexagon has the best performance. The maximum thermal performance index and optimal relative density increase rapidly with the growth of relative thickness, while they get slowly and reach a peak value when the relative thickness grew over 20. The minimum mass was obtained, and the maximum thermal performance index tends towards a constant value with the increasing minimum mass. The minimum mass decreases with the increasing proportion of heat transfer coefficients in the same maximum thermal performance index. At last, the structure was optimized considering the structural load, and the hexagon has the superior performance to others.