仿生矿化法制备可降解羟基磷灰石/氧化细菌纤维素复合材料

Preparation of hydroxyapaite/2, 3-dialdehyde bacterial cellulose composite via biomimetic route

  • 摘要: 细菌纤维素是具有天然纳米网状结构的支架材料,对其进行氧化改性后可获得可调控的降解性能。通过仿生矿化氧化改性的细菌纤维素支架,制备了可降解羟基磷灰石/氧化细菌纤维素复合骨组织工程支架材料。观察并分析了仿生矿化过程氧化细菌纤维素的降解和羟基磷灰石的形成,并通过SEM、EDS、XRD对羟基磷灰石在可降解氧化细菌纤维素支架上沉积进行了表征,矿化7天的羟基磷灰石/氧化细菌纤维素复合材料表面和内部均有磷灰石形成,测得磷灰石的钙磷比为1.75,主要为羟基磷灰石,伴有少量碳羟磷灰石。结果表明,使用仿生矿化法成功获得了一种新型可降解羟基磷灰石/氧化纤维素复合材料支架。

     

    Abstract: Bacterial cellulose (BC) is a kind of biomedical scaffold with nano network. BC should be oxidized to 2, 3-dialdehyde bacterial cellulose (DABC) by sodium periodate to make BC degradable. By the biomimetic route,the degradable HA/DABC composites for bone tissue engineering were prepared. It was observed that the apatite mineralized on DABC via the biomimetic route together with degradation of DABC by SEM. The HA/DABC composites acquired were proved by SEM,EDS and XRD. There was apatite formation on the surface and inside of the DABC via 7 days biomimetic mineralization. The ratio of calcium phosphate to the apatite is 1.75 by EDS.  It was proved to be hydroxyapatite mainly with a little carbonate hydroxyapatite by XRD. It is shown that the degradable HA/DABC composites for bone tissue engineering could be prepared via the biomimetic route.

     

/

返回文章
返回