氮硫共掺杂三维石墨烯/铜基金属有机骨架复合材料的模板合成及其高性能超级电容器应用

Template Synthesis of Nitrogen-Sulfur Co-Doped Three-Dimensional Graphene/Copper-Based Metal-Organic Framework Composites for High-Performance Supercapacitors

  • 摘要: 随着全球对高效能源存储技术需求的不断增长,超级电容器因其高功率密度、长循环寿命和快速充放电能力而成为研究的热点。本研究提出了一种新型氮硫共掺杂三维石墨烯负载铜基金属有机框架(NS-3DPG-CuBTC)复合材料,作为超级电容器电极材料。通过改进的水热合成方法,将氮和硫异质原子共掺杂的三维石墨烯与铜基金属有机框架CuBTC成功结合,制备出具有高孔隙率和丰富活性位点的复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析(BET)和傅里叶变换红外光谱(FTIR)等技术对材料结构和形貌进行了系统表征。电化学测试结果表明,NS-3DPG-CuBTC电极在3M KOH电解液中表现出优异的比电容,最高可达977.17 F·g−1,并在不同扫描速率和电流密度下保持良好的电容性能。组装的对称型超级电容器在电压窗口0-0.8 V内展现了较高的能量密度(27.96 Wh·kg−1)和功率密度(1473.73 W·kg−1),且经过2000次充放电循环后容量保持率达到94.06%,展现出优异的循环稳定性。实验结果表明,氮硫共掺杂策略有效提高了材料的电化学性能,增强了电极的导电性和离子传输效率,且具有较好的长周期稳定性。

     

    Abstract: With the growing global demand for efficient energy storage technologies, supercapacitors have become a research focus due to their high power density, long cycle life, and fast charge-discharge capabilities. This study presents a novel nitrogen-sulfur co-doped three-dimensional graphene-supported copper-based metal-organic framework (NS-3DPG-CuBTC) composite material as an electrode material for supercapacitors. Using an improved hydrothermal synthesis method, nitrogen and sulfur heteroatoms were co-doped into the three-dimensional graphene structure, which was then successfully combined with the copper-based metal-organic framework CuBTC to form a composite material with high porosity and abundant active sites. The material’s structure and morphology were systematically characterized using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and Fourier-transform infrared spectroscopy (FTIR). Electrochemical testing results show that the NS-3DPG-CuBTC electrode exhibits excellent specific capacitance, reaching up to 755.43 F·g−1 in a 3M KOH electrolyte, while maintaining good capacitance performance at different scan rates and current densities. The assembled symmetric supercapacitor demonstrates high energy density (27.96 Wh·kg−1) and power density (1473.73 W·kg−1) within a voltage window of 0–0.8 V, and after 2000 charge-discharge cycles, the capacity retention reaches 94.06%, indicating excellent cycle stability. The experimental results indicate that the nitrogen-sulfur co-doping strategy effectively improves the electrochemical performance of the material, enhancing the electrode’s conductivity and ion transport efficiency, while maintaining good long-term stability.

     

/

返回文章
返回