阻燃安全型PES@SiO2锂离子电池隔膜的制备及其性能

高亮, 巩桂芬, 崔巍巍, 刘晓蕊

高亮, 巩桂芬, 崔巍巍, 等. 阻燃安全型PES@SiO2锂离子电池隔膜的制备及其性能[J]. 复合材料学报, 2024, 43(0): 1-11.
引用本文: 高亮, 巩桂芬, 崔巍巍, 等. 阻燃安全型PES@SiO2锂离子电池隔膜的制备及其性能[J]. 复合材料学报, 2024, 43(0): 1-11.
GAO Liang, GONG Guifen, CUI Weiwei, et al. Preparation and performance of flame-retardant safety PES@SiO2 lithium-ion battery separator[J]. Acta Materiae Compositae Sinica.
Citation: GAO Liang, GONG Guifen, CUI Weiwei, et al. Preparation and performance of flame-retardant safety PES@SiO2 lithium-ion battery separator[J]. Acta Materiae Compositae Sinica.

阻燃安全型PES@SiO2锂离子电池隔膜的制备及其性能

基金项目: 国家自然科学基金(51603057)
详细信息
    通讯作者:

    巩桂芬,博士,教授,硕士生导师,研究方向为功能高分子材料 E-mail:ggf-hust@163.com

  • 中图分类号: TB332

Preparation and performance of flame-retardant safety PES@SiO2 lithium-ion battery separator

Funds: National Natural Science Foundation of China (51603057)
  • 摘要:

    锂离子电池具有高比能量密度、良好的循环性能及环境友好等特性,使其在电动汽车、电子产品、储能等领域广泛应用。但近年来锂离子电池在使用过程中频繁发生安全事故,使得人们对这种清洁能源的安全性提出了质疑。聚醚砜(PES)隔膜具有优异的耐高温尺寸稳定性,同时在阻燃性能方面表现也很突出,本文通过静电纺丝技术,使得制备的PES电池隔膜具有良好的孔隙率,对电解液有更好的浸润性。利用原位生长技术在PES纳米纤维的表面包覆一层SiO2,使隔膜在力学性能以及耐热稳定上得以提高,同时无机粒子SiO2在高温灼烧下缩聚交联成Si—O—Si网状结构层阻断燃烧的特性又赋予隔膜阻燃的性能,通过扫描电子显微镜(SEM)对复合隔膜的微观形貌进行表征,以及傅里叶红外光谱(FTIR)对复合隔膜的微观结构进行表征等,通过对纤维隔膜进行点火器灼烧,表征了复合隔膜的阻燃特性,其中PES/SiO2-1.5隔膜的阻燃性最好,同时在电化学性能方面表现也十分优异。

     

    Abstract:

    Lithium-ion batteries, renowned for their high energy density, robust cycle life, and environmentally friendly profile, have found extensive applications in sectors such as electric vehicles, consumer electronics, and energy storage systems. Despite their widespread adoption, the increasing frequency of safety incidents during lithium-ion battery usage in recent years has cast doubt on the safety and reliability of this clean energy technology. Polyethersulfone (PES) membranes demonstrate superior dimensional stability at elevated temperatures, along with exceptional flame-retardant properties. In this work, PES-based separators were fabricated via electrospinning, yielding membranes with optimized porosity and enhanced electrolyte wettability. Through the application of in-situ growth techniques, a SiO2 layer was uniformly coated onto the PES nanofibers, enhancing both the mechanical properties and thermal stability of the separators. The inorganic SiO2 nanoparticles undergo polycondensation and cross-linking under high temperatures, forming a Si—O—Si network that effectively inhibits combustion, thus imparting flame-retardant capabilities to the membranes. The microstructure of the composite membranes was systematically characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).Flame retardancy was assessed via ignition testing, revealing that the PES/SiO2-1.5 membrane demonstrated superior flame resistance, along with remarkable electrochemical performance.

     

  • 图  1   复合隔膜工艺流程图

    Figure  1.   Composite separators process flow chart

    图  2   TEOS合成SiO2微球的水解缩合反应过程

    Figure  2.   The hydrolysis and condensation reaction process of TEOS synthesis of SiO2 microspheres

    图  3   (a)-(d) PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5在5000×下的SEM图; (e)-(h) PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5在20000×下的SEM图; (i)-(l) PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5在100000×下的SEM图

    Figure  3.   (a)-(d) SEM images of PES, PES/SiO2-0.5, PES/SiO2-1.0, and PES/SiO2-1.5 at 5000×; (e)-(h) SEM images of PES, PES/SiO2-0.5, PES/SiO2-1.0, and PES/SiO2-1.5 at 20000×;

    (i)-(l) SEM images of PES, PES/SiO2-0.5, PES/SiO2-1.0, and PES/SiO2-1.5 at 100000×

    图  4   PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5的FTIR图谱

    Figure  4.   FTIR Spectra of PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5

    图  5   PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5的XRD图谱

    Figure  5.   XRD patterns of PES, PES/SiO2-0.5, PES/SiO2-1.0, PES/SiO2-1.5

    图  6   PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5纤维复合隔膜的力学性能柱状图

    Figure  6.   Histogram of mechanical properties of PES, PES/SiO2-0.5, PES/SiO2-1.0 and PES/SiO2-1.5 fiber composite separators

    图  7   Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5纤维复合隔膜(a)吸液率随时间变化的曲线(b)饱和吸液率和孔隙率柱状图(c)接触角图片

    Figure  7.   Celgard, PES, PES/SiO2-0.5, PES/SiO2-1.0, PES/SiO2-1.5 fiber composite septums (a) Curves of liquid absorption over time (b) Saturated absorption and porosity histogram (c) Contact angle image

    图  8   Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5隔膜的热收缩图片

    Figure  8.   Heat shrink image of Celgard, PES/SiO2-0.5, PES/SiO2-1.0, PES/SiO2-1.5 diaphragm

    图  9   Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5隔膜的电化学窗口曲 线

    Figure  9.   Electrochemical window curves of Celagard , PES/SiO2-0.5 , PES/SiO2-1.0 ,PES/SiO2-1.5 separator

    图  10   Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5隔膜的界面阻抗

    Figure  10.   Interfacial impedance of Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5 separator

    图  11   Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5隔膜的交流阻抗图谱

    Figure  11.   AC impedance maps of Celgard、PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5 separator

    图  12   PES、PES/SiO2-0.5、PES/SiO2-1.0、PES/SiO2-1.5隔膜在点火器灼烧下不同时间的形貌图片

    Figure  12.   Pictures of the morphology of PES, PES/SiO2-0.5, PES/SiO2-1.0, and PES/SiO2-1.5 diaphragms at different times under the ignition burn

    图  13   SiO2纳米微球阻燃机制

    Figure  13.   Flame retardant mechanism of SiO2 nanospheres

    图  14   Celgard、PES、PES/SiO2-1.5隔膜的循环性能曲线

    Figure  14.   Cyclic performance curves of Celgard、PES、PES/SiO2-1.5 separator

    图  15   Celgard、PES、PES/SiO2-1.5隔膜的倍率性能曲线

    Figure  15.   Magnanimity performance curves of Celgard、PES、PES/SiO2-1.5 separator

    表  1   制备 SiO2微球的前驱体溶液样品及用量

    Table  1   Precursor solution samples and dosage of SiO2 microspheres

    SampleCTEOS
    /(mol·L-1)
    MTEOS
    /g
    Vabsolute ethanol
    /mL
    Vammonia
    /mL
    PES/SiO2-0.50.55.2503
    PES/SiO2-1.01.010.4503
    PES/SiO2-1.51.515.6503
    Notes: PES is Polyethersulfone; CTEOS is the concentration of TEOS, in mol/L; MTEOS is the quality of TEOS, in g; Vabsolute ethanol is the volume of absolute ethanol in mL; Vammonia is the volume of ammonia in mL
    下载: 导出CSV

    表  2   不同纤维膜的本征电阻与离子电导率

    Table  2   Intrinsic resistance and ionic conductivity of different fiber membranes

    Diaphragm typeDiaphragm thickness /μmBody resistance/ΩIonic conductivity/(mS·cm-1)
    Celgard34.92.80.55
    PES188.52.123.92
    PES/SiO2-0.5203.52.333.85
    PES/SiO2-1.0211.32.613.57
    PES/SiO2-1.5188.92.733.05
    下载: 导出CSV
  • [1]

    LIU Z, JIANG Y, HU Q, et al. Safer Lithium-Ion Batteries from the Separator Aspect: Development and Future Perspectives[J]. Energy & Environmental Materials, 2020, 4(3): 336-362.

    [2]

    GAO Z, LUO L, WEN R, et al. A multifunctional composite membrane for high-safety lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(4): 1774-1784. DOI: 10.1039/D2TA08690E

    [3]

    LIN W, WANG F, WANG H, et al. Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations[J]. ChemSusChem, 2022, 15(24): e202201464. DOI: 10.1002/cssc.202201464

    [4]

    ZENG Z, SHAO Z, SHEN R, et al. Coaxial Electrospun Tai Chi-Inspired Lithium-Ion Battery Separator with High Performance and Fireproofing Capacity[J]. ACS Applied Materials & Interfaces, 2023, 15(37): 44259-44267.

    [5]

    HAN C, CAO Y, ZHANG S, et al. Separator with Nitrogen–Phosphorus Flame-Retardant for LiNixCoyMn1−x−yO2 Cathode-Based Lithium-Ion Batteries[J]. Small, 2023, 19(26): 2207453. DOI: 10.1002/smll.202207453

    [6]

    HUANG J, HONG M, LI G, et al. Application of Terpolymer Encapsulated Flame-Retardant Separator in Ni-Rich and High-Voltage Lithium-Ion Batteries[J]. Journal of The Electrochemical Society, 2022, 169(2): 020513. DOI: 10.1149/1945-7111/ac4d69

    [7]

    LI Y, YANG H, AHMADI A, et al. A thermal resistant and flame retardant separator reinforced by attapulgite for lithium-ion batteries via multilayer coextrusion[J]. Polymer, 2022, 253: 125027. DOI: 10.1016/j.polymer.2022.125027

    [8]

    ZENG G, ZHAO J, FENG C, et al. Flame-Retardant Bilayer Separator with Multifaceted van der Waals Interaction for Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26402-26411.

    [9]

    YAN L, WANG H, SUN Z, et al. Enhanced Performance of Lithium-Ion Batteries Based on a Polyethylenimine-Grafted SiO2 Modified Polypropylene Separator[J]. Acs Applied Polymer Materials, 2024, 6(20): 12661-12674. DOI: 10.1021/acsapm.4c02222

    [10]

    YAO W, HE X, ZHENG Z, et al. Surface-modified composite separator for lithium-ion battery with enhanced durability and security[J]. Progress in Natural Science-Materials International, 2023, 33(6): 804-811. DOI: 10.1016/j.pnsc.2023.11.013

    [11]

    REN W, LIANG J, HUANG M, et al. Thermally-stable and flame-retardant metal-organic framework-based separator for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2024, 498: 155811. DOI: 10.1016/j.cej.2024.155811

    [12]

    YU B, CHEN X, JIN X, et al. Heat-Resistant Lithium-Ion-Battery Separator Using Synchronous Thermal Stabilization/Imidization[J]. Acs Applied Polymer Materials, 2024, 6(5): 2464-2473. DOI: 10.1021/acsapm.3c02266

    [13] 刘源骞, 陈英波, 许林哲, 等. 聚醚砜/改性UiO66共混超滤膜的制备与性能 [J]精细化工, 1-14

    LIU Yuanqian; CHEN Yingbo; Linzhe Xu, et al. , Preparation and properties of polyethersulfone/modified UiO66 blended ultrafiltration membrane [J] Fine Chemicals. 1-14. (in Chinese).

    [14] 樊雅玲, 刘根起, 罗四辈. 粒径可控纳米二氧化硅微球的制备[J]粘接, 2015, 36(9): 44-47

    FAN Yaling; LIU Genqi; Luo Siji, Preparation of nano-silica microspheres with controllable particle size[J]Bonding. 2015, 36 (9), 44-47. (in Chinese).

    [15]

    ZHENG P L, ZHAO H H, ZHOU Y M, et al. P/N-containing SiO2 flame retardant particles formed by in-situ hydrolysis for significantly improve the flame retardancy and toughness of epoxy resins[J]. Composites Communications, 2024, 49: 101989. DOI: 10.1016/j.coco.2024.101989

    [16]

    DING W, LIU Y, XU L. Batch Preparation and Performance Study of Boehmite-Based Electrospun Nanofiber Separators for Lithium-Ion Batteries[J]. Molecules, 2024, 29(16): 3938. DOI: 10.3390/molecules29163938

    [17]

    WANG J, ZHANG Y, PENG X, et al. Redox-active polypyrrole/bacterial cellulose bilayer separator for lithium-ion batteries[J]. Journal of Energy Storage, 2024, 93: 112386. DOI: 10.1016/j.est.2024.112386

    [18]

    CUI W W, SHI L N, SONG W, et al. A heatproof electrospun PES/PVDF composite membrane as an advanced separator for lithium-ion batteries[J]. Journal of Applied Polymer Science, 2020, 137(43): 49328. DOI: 10.1002/app.49328

    [19]

    XU H Y, FEI G T, XU S H, et al. Functional modification of polypropylene separators with solid electrolyte LATP and SiO2 coatings for lithium batteries[J]. Solid State Ionics, 2024, 412: 116603. DOI: 10.1016/j.ssi.2024.116603

    [20]

    SONG X Y, HUANG W C, GE R B, et al. Electrospun Nanofibers Constituted of a Polyimide Core Decorated with Polyhedral Oligomeric Silsesquioxanes and a TiO2 Shell as Separators for Lithium-Ion Batteries[J]. Acs Applied Nano Materials, 2024, 7(18): 21565-21577. DOI: 10.1021/acsanm.4c03481

    [21]

    SONG Y, ZHAO G, ZHANG S, et al. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries[J]. Carbohydrate Polymers, 2024, 329: 121530. DOI: 10.1016/j.carbpol.2023.121530

    [22]

    SONG Y, ZHAO G, ZHANG S, et al. A Light-Thin Chitosan Nanofiber Separator for High-Performance Lithium-Ion Batteries[J]. Polymers, 2023, 15(18): 3654. DOI: 10.3390/polym15183654

    [23] 朴婧贤. 耐热阻燃型锂离子电池隔膜的制备及性能研究 [D], 2023

    PIAO Jingxian. Preparation and performance of heat-resistant and flame-retardant lithium-ion battery separator. Master's, 2023. (in Chinese).

    [24]

    HAN C, CAO Y, ZHANG S, et al. Separator with Nitrogen-Phosphorus Flame-Retardant for LiNixCoyMn1-x-yO2 Cathode-Based Lithium-Ion Batteries[J]. Small, 2023, 19(26): 2207453. DOI: 10.1002/smll.202207453

    [25] 王一迪, 巩桂芬, 崔巍巍, 等. 辐照改性聚丙烯腈/热塑性聚氨酯锂离子电池隔膜的制备与性能 [J]复合材料学报, 2024, 41(5): 2385-2394

    WANG Yidi; Gong Guifen; Weiwei Cui, et al. , Preparation and properties of separators for irradiated modified polyacrylonitrile/thermoplastic polyurethane lithium-ion batteries [J] Journal of Composite Materials. 024, 41 (5), 2385-2394. (in Chinese).

  • 目的 

    锂离子电池因其高比能量密度、良好的循环性能及环境友好等特性,已广泛应用于电动汽车、电子产品和储能领域。然而,近年来锂离子电池在使用过程中频繁发生的安全事故,已引发对这一清洁能源安全性的广泛关注和质疑。本研究旨在制备一种结构纤维膜,通过结合静电纺丝法和原位生长法对纤维复合隔膜的结构进行优化,其中聚醚砜(PES)作为第一核层,二氧化硅(SiO)作为第二壳层。PES和SiO协同提供双重耐热骨架,分别作为耐热聚合物和无机骨架,共同支撑复合薄膜的结构,从而赋予其优异的耐热性。静电纺丝的PES纤维赋予膜优异的电解液亲和性,能够有效吸收并保留电解液。阻燃性能是电池安全性的关键,而耐热性则是阻燃性能发挥作用的基础。确保隔膜在高温下具有足够的尺寸稳定性,可以防止其在燃烧时发生收缩,从而使阻燃材料充分发挥作用。通过两者的协同作用,可开发出兼具高耐热性与高阻燃性的全新隔膜,用于制备更加安全的锂离子电池,从而有效应对锂电池的易燃易爆问题,显著提升其安全性能。

    方法 

    本研究通过配制PES纺丝液,利用静电纺丝法制备PES纤维膜,并在80 ℃条件下进行鼓风烘箱干燥处理。 之后通过原位生长技术,在PES纳米纤维表面包覆一层SiO,显著提升隔膜的力学性能和耐热稳定性。此外,高温灼烧下,SiO颗粒通过缩聚和交联形成Si—O—Si网状结构,有效阻断燃烧,从而赋予隔膜优异的阻燃性能。利用扫描电子显微镜(SEM)对复合隔膜的微观形貌进行分析,并采用傅里叶变换红外光谱(FTIR)对其微观结构进行表征。此外,通过X射线衍射仪对不同隔膜的结晶度进行测定。通过电化学稳定窗口、离子电导率、界面阻抗、循环性能及倍率性能测试,系统表征隔膜的电化学性能。同时,通过点火器灼烧试验,评估复合隔膜的阻燃性能。

    结果 

    通过微观形貌观察、隔膜微观结构分析以及X射线衍射(XRD)谱图的结果,验证了PES纤维膜上存在SiO。其中PES/SiO-1.5的吸液率超过商业Celgard隔膜的三倍。即使在200 ℃下,PES/SiO-1.5隔膜的结构和性能也未发生显著变化。PES/SiO-1.5隔膜的电化学稳定窗口高达5.45 V,离子电导率达到3.05 mS/cm,同时表现出优异的阻燃性能:在灼烧测试中,其尺寸保持稳定,并能在离火后迅速自熄。组装成全电池进行循环和倍率性能测试,在循环100次后,PES/SiO-1.5隔膜的容量保持率高达96.8%,并在倍率性能测试中展现出卓越的电化学性能。

    结论 

    本研究利用静电纺丝工艺制备PES纤维隔膜,并通过原位生长法在纤维表面包覆SiO,成功构筑出一种纤维复合隔膜,赋予其优异的阻燃性能。同时制备的纤维复合隔膜表现出卓越的耐热性能,在200 ℃下无明显收缩,灼烧测试中尺寸保持稳定,且离火后能够迅速自熄,为电池提供了可靠的安全保障。在三种复合隔膜中,PES/SiO-1.5纤维复合隔膜不仅具备出色的阻燃性能,同时还展现出优异的电化学性能。因此,该隔膜在提升大型锂离子电池的电化学性能和安全性方面展现出巨大的应用潜力。

图(15)  /  表(2)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-23
  • 修回日期:  2024-11-17
  • 录用日期:  2024-11-23
  • 网络出版日期:  2024-12-06

目录

    /

    返回文章
    返回