基于高度可控的激光雕刻技术构建的准Z方向“环氧钉”增强铝合金-碳纤维复合材料的粘接性能研究

Constructing quasi-Z-directional epoxy-pins on aluminum alloy surface via highly controllable laser engraving for stronger adhesive bonding with carbon fiber composite

  • 摘要: 本研究设计了激光雕刻、常压等离子喷涂和树脂预涂(RPC)技术处理铝合金表面构建准Z方向“环氧钉”,实现铝合金与碳纤维增强树脂(CFRP)复合材料的粘接强度提升。采用激光雕刻处理铝合金表面形成凹坑结构,为浸渍环氧树脂提供了较大的垂直空间,同时获得了更高的润湿性。使用常压等离子喷涂技术去除铝合金表面污染物,增加极性官能团的吸附量。进一步运用RPC技术将高粘度环氧树脂引入预制坑道结构,减少环氧树脂胶与基体之间的缺陷,增强机械互锁效应。经联合处理后,试样最高的粘接强度比未处理的强度提高了130.5%,复合材料的破坏模式由铝合金表面的粘接失效转变为CFRP复合材料的分层失效。简单有效的联合处理技术方案有望在异质粘接结构的高性能化发展获得应用。

     

    Abstract: This study designed laser engraving, atmospheric pressure plasma spraying and resin pre-coating (RPC) on aluminum alloy surface to construct quasi-Z-directional “epoxy-pins” for improving bonding strength with carbon fiber reinforce polymer (CFRP). The laser engraving treatment was used to create pitted structure on the aluminum alloy surface, higher wettability was acquired and greater vertical spaces were formed to impregnate epoxy resin for stronger mechanical interlocking. Atmospheric pressure plasma spraying was then utilized to remove surface contaminants of aluminum alloy surface and increase the quantity of adsorbed polar functional groups. RPC technique was further adopted to guide high-viscosity epoxy resin into pits to minimize defects between the resin and the substrate and reinforce the mechanical interlocking. The bonding strength of the specimen with the combined treatments of L0.08-1 yielded up to 130.5% increment than the base in bonding strength. The failure modes of composites were changed from adhesive failure of aluminum alloy surface to delamination-dominated failure of laminated CFRP composites. Simple and effective combined treatment method is expected to gain application in the development of high performance of heterogeneous material bonding.

     

/

返回文章
返回