响应面优化聚吡咯改性生物炭电极的制备及电容性能研究

Response surface optimization of polypyrrole-modified biochar electrodes for enhanced capacitive performance

  • 摘要: 为满足可再生能源高效储能需求,开发低成本高性能碳基电极材料至关重要。本研究以玉米秸秆为原料,经原位氧化聚合法制备聚吡咯改性生物炭(Ppy-BC),并通过Box-Behnken设计与响应面分析优化吡咯浓度、氯化铁浓度和改性时间,实现结构调控与性能提升。结果表明,在最优条件下(吡咯浓度0.4 mol·L−1、氯化铁浓度2 mol·L−1、改性时间4 h),Ppy-BC的比表面积达468.2 m2·g−1。在0.5 A·g−1的电流密度下,比电容达345 F·g−1,经5000次充放电循环后(10 A·g−1),其电容保持率高达91.12%,表现出优异的倍率性能和循环稳定性。响应面模型进一步验证了孔径分布与电化学行为之间的高度一致性,表明工艺参数对结构与性能的精准调控作用。聚吡咯改性显著提升了生物炭的导电性与能量存储能力。该方法为农作物废弃物的高值利用提供了新途径,展现出作为高性能超级电容器电极材料的广阔应用前景。

     

    Abstract: Developing low-cost and high-performance carbon-based electrodes is essential for efficient renewable energy storage. Polypyrrole-modified biochar (Ppy-BC) was prepared from corn stalks via in-situ oxidative polymerization, and the preparation conditions were optimized using a Box-Behnken design and response surface analysis. Pyrrole concentration, ferric chloride concentration, and modification time were selected as variables. Under the optimal conditions(0.4 mol·L−1 pyrrole, 2 mol·L−1 FeCl3, 4 h), Ppy-BC achieved a specific surface area of 468.2 m2·g−1 and a specific capacitance of 345 F·g−1 at 0.5 A·g−1, with 91.12% retention after 5000 cycles at 10 A·g−1. The response surface model further confirms a strong correlation between pore structure and electrochemical performance. Polypyrrole modification significantly enhances the conductivity and energy storage capacity of biochar, showing great potential for agricultural waste utilization and high-performance supercapacitor electrodes.

     

/

返回文章
返回