环氧树脂增韧对国产T1100级碳纤维复合材料界面特性及力学性能影响

Interfacial Compatibility and Mechanical Performance of Domestic T1100-Grade Carbon Fiber Composites Modulated by Epoxy Resin Toughening

  • 摘要: 针对国产 T1100 级碳纤维表面化学惰性强、与增韧树脂界面匹配性差,导致复合材料“强而不韧”的瓶颈问题,本文以CCF1100G碳纤维为增强体,通过调控环氧树脂基体中增韧组分质量分数(0、15wt%、25wt%、35wt%),制备预浸料及其复合材料,系统研究了增韧含量对树脂微观相结构、纤维/树脂界面结合特性及复合材料力学性能的协同影响。研究结果表明:随着增韧含量的增加,树脂基体发生反应诱导相分离,微观形貌由“海岛结构”演变为“相反转结构”,显著提升了树脂本体的断裂韧性;然而,增韧组分的引入削弱了树脂基体与纤维之间的界面结合能力,导致单纤维微珠脱粘界面剪切强度随增韧含量的增加而降低。综合分析发现,当增韧含量为25wt%时,体系实现了基体韧性与界面强度的协同平衡:该复合材料在保持静态力学性能的同时,0°拉伸强度3565 MPa,0°拉伸模量190 GPa,0°压缩强度2088 MPa,短梁剪切强度122 MPa,获得了较高的抗冲击损伤容限,其冲击后压缩强度(CAI)达363 MPa。通过上述研究,为国产T1100级碳纤维增强增韧环氧树脂复合材料在航空航天领域的应用提供支撑。

     

    Abstract: Domestic T1100-grade carbon fiber composites often suffer from a ‘high strength but low toughness’ bottleneck due to their surface chemical inertness and poor interfacial compatibility. To address this, prepregs and composites were fabricated using CCF1100G fibers and epoxy matrices with varying toughening component mass fractions (0, 15, 25, and 35wt%). The synergistic effects of toughening content on the resin micro-phase structure, fiber/resin interfacial bonding characteristics, and mechanical properties of the composites were systematically investigated. The results indicate that increasing the toughening content induces reaction-induced phase separation in the matrix, evolving from a ‘sea-island’ to a ‘phase inversion’ morphology, which significantly enhances the fracture toughness of the resin matrix. However, the introduction of toughening components weakened the interfacial bonding quality between the matrix and the fibers, leading to a monotonic decrease in the single-fiber micro-bead debonding interfacial shear strength. The composite with 25 wt% toughening content achieves an optimal balance between matrix toughness and interfacial strength. It exhibits excellent static mechanical properties: a 0° tensile strength of 3565 MPa, a modulus of 190 GPa, a 0° compressive strength of 2088 MPa, and a short-beam shear strength of 122 MPa. Moreover, it demonstrates superior damage tolerance, with a compression after impact (CAI) strength of 363 MPa. This study provides critical insights for developing domestic T1100-grade carbon fiber reinforced epoxy resin composites in aerospace applications.

     

/

返回文章
返回