珊瑚海水海砂混凝土压-剪复合力学性能

Compressive-shear composite mechanical properties of coral seawater sea sand concrete

  • 摘要: 为研究珊瑚海水海砂混凝土(CSSC)在压剪复合作用下的力学性能,以压应力比为变化参数设计并制作21个珊瑚海水海砂混凝土试件进行压剪试验,观察了试件在压-剪复合作用下的破坏形态,深入分析了压应力比对CSSC剪切强度的影响,并提出了剪切强度计算公式和破坏准则。研究结果表明,随着压应力比k的增大,CSSC剪切强度近似呈幂函数状增大,试件脆性破坏特征逐渐减弱。当k以0.1为增量从0增加到0.5时,剪切强度分别提升了1.53、2.81、3.60、4.32、4.67倍。珊瑚海水海砂混凝土剪切强度主要由黏聚强度、骨料咬合强度和界面摩擦强度组成,其分别占剪切强度的10%~22%、19%~30%和50%~69%;随着压应力比的增大,黏聚强度先增加后减小,骨料咬合强度总体呈上升趋势,界面摩擦强度近似呈线性增加。根据试验数据提出CSSC剪切强度计算公式,计算值与试验值吻合较好;使用不同的破坏准则对试验数据进行分析,发现基于主应力空间的破坏准则与试验结果吻合最好。

     

    Abstract: In order to study the mechanical properties of coral seawater and sea sand concrete (CSSC) under the combined action of compression and shear, 21 coral seawater and sea sand concrete specimens were designed and manufactured with the compressive stress ratio as the variable parameter. The failure modes of the specimens under the combined action of compression and shear were observed. The influence of compressive stress ratio on the shear strength of CSSC was analyzed in depth, and the shear strength calculation formula and failure criterion were proposed. The results show that with the increase of compressive stress ratio k, the shear strength of CSSC increases approximately in a power function, and the brittle failure characteristics of the specimen gradually weaken. When k increases from 0 to 0.5 with an increment of 0.1, the shear strength increases by 1.53, 2.81, 3.60, 4.32 and 4.67 times, respectively. The shear strength of coral seawater and sea sand concrete is mainly composed of cohesive strength, aggregate interlocking strength and interfacial friction strength, which account for 10%~22%,19%~30% and 50%~69% of the shear strength, respectively. With the increase of the compressive stress ratio, the cohesive strength first increases and then decreases, the aggregate occlusion strength generally shows an upward trend, and the interface friction strength increases approximately linearly. According to the experimental data, the calculation formula of CSSC shear strength is proposed, and the calculated value is in good agreement with the experimental value. Different failure criteria are used to analyze the test data, and it is found that the failure criteria based on the principal stress space are in good agreement with the test results.

     

/

返回文章
返回