ZnO-Ov/Cu2O异质结光电催化CO2和NO3共还原合成尿素

Photoelectrocatalytic co-reduction of CO2 and NO3 for urea synthesis over ZnO-Ov/Cu2O heterojunction

  • 摘要: 随着人类社会的发展,化石燃料燃烧和人类活动导致大气中CO2的浓度不断上升,同时人类活动排放的大量污水导致水体中硝酸根(\textNO_3^- )含量不断增加。利用可再生太阳能资源将CO2和\textNO_3^- 转化为高附加值尿素是实现减污降碳、CO2和\textNO_3^- 资源化的重要途径之一。采用电沉积法和光沉积法合成ZnO-Ov/Cu2O复合材料,并将其应用于光电催化CO2和\textNO_3^- 共还原合成尿素的反应。结果表明,ZnO-Ov/Cu2O在−0.8 V vs. RHE下光电催化合成尿素的法拉第效率(FE)为11.4%,产率为41.4 μmol·gcat.−1·h−1,分别是纯ZnO FE(6.3%)和产率(12.5 μmol·gcat.−1·h−1)的1.79倍和3.3倍。结合电化学阻抗谱(EIS)和紫外漫反射吸收光谱(DRS),氧空位和Cu2O的引入明显提高了材料的光吸收性能、光生载流子分离和迁移效率,并且提供了额外丰富的Cu+催化活性位点,从而增强了光电催化尿素合成性能。本工作为探索用于光电化学尿素合成和其他可持续应用的先进催化剂提供理论指导,为实现环境友好型污染治理和碳减排提供了一种环境修复策略。

     

    Abstract: With the development of human society, the combustion of fossil fuels and various anthropogenic activities have led to a sustained increase in atmospheric CO2 concentration. Concurrently, significant wastewater discharge has contributed to elevated nitrate ion (\textNO_3^- ) levels in aquatic environments. The conversion of CO2 and \textNO_3^- into high-value urea using renewable solar energy represents a pivotal strategy for mitigating pollution and carbon emissions, while promoting resource recycling of these compounds. In this study, we synthesized a ZnO-Ov/Cu2O composite catalyst through electrochemical deposition and photodeposition methods. The catalyst was employed for the photoelectrocatalytic co-reduction of CO2 and \textNO_3^- to synthesize urea. The experimental results demonstrate that ZnO-Ov/Cu2O achieved a Faradaic efficiency (FE) of 11.4% and a urea yield of 41.4 μmol·gcat.−1·h−1 at potential of −0.8 V vs. RHE, which are 1.79 times and 3.3 times than that of pure ZnO (FE: 6.3%; yield: 12.5 μmol·gcat.−1·h−1), respectively. Combined with the results of electrochemical impedance spectroscopy (EIS) and UV-visible diffuse reflectance spectroscopy (DRS), the introduction of oxygen vacancies and Cu2O significantly improve the photoadsorption, separation and migration efficiency of photogenerated charge carrier and provide additional abundant Cu+ catalytic active sites, thus enhancing the performance of photoelectrocatalytic urea synthesis. This work provides theoretical guidance for the development of advanced catalysts for photoelectrochemical urea synthesis and other sustainable applications, offering an environmentally friendly strategy for pollution control and carbon reduction.

     

/

返回文章
返回