留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型CFRP-UHPC组合管混凝土圆柱轴压性能

刘磊 何真 汪鹏 蔡新华 韩笛扬 罗滔

刘磊, 何真, 汪鹏, 等. 新型CFRP-UHPC组合管混凝土圆柱轴压性能[J]. 复合材料学报, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003
引用本文: 刘磊, 何真, 汪鹏, 等. 新型CFRP-UHPC组合管混凝土圆柱轴压性能[J]. 复合材料学报, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003
LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003
Citation: LIU Lei, HE Zhen, WANG Peng, et al. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. doi: 10.13801/j.cnki.fhclxb.20220623.003

新型CFRP-UHPC组合管混凝土圆柱轴压性能

doi: 10.13801/j.cnki.fhclxb.20220623.003
基金项目: 国家“973”重点基础研究发展计划(2015 CB655101);山东省自然科学基金项目(ZR2021 ME002)
详细信息
    通讯作者:

    何真,博士,教授,博士生导师,研究方向为水泥化学和新型低碳水工材料 E-mail: hezhen@whu.edu.cn

  • 中图分类号: TU398.9;TU375.3;TU317.1

Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns

Funds: National Key Basic Research Program of China (973 Program) (2015 CB655101); Natural Science Foundation of Shandong Province of China (ZR2021 ME002)
  • 摘要: 为研究超高性能混凝土(UHPC)管替代碳纤维增强聚合物(CFRP)-钢管混凝土组合柱中钢管的可行性,提出一种外部缠绕CFRP的UHPC预制管、内部现浇填充普通混凝土的新型CFRP-UHPC组合管混凝土(Concrete-filled CFRP-UHPC tube,CFFUT)柱。对10个CFFUT圆柱(包含2个对比柱)进行了单调轴压试验,研究了UHPC管壁厚度、CFRP环向包裹层数和核心混凝土强度等的影响规律。结果表明:CFRP-UHPC管可以有效提高组合柱的承载力、变形能力和延性;CFFUT圆柱破坏形态为核心混凝土压溃、UHPC管开裂和CFRP拉断,破坏后整体性较好,属延性破坏模式;CFFUT圆柱的极限承载力与UHPC管壁厚度、CFRP层数和核心混凝土强度呈正相关;延性系数随UHPC管壁厚度、CFRP层数增加而提高,随核心混凝土强度增加先提高后降低。揭示了CFFUT柱的界面增强作用机制,CFFUT柱极限承载力与同等截面普通混凝土柱相比提高93.9%~203.5%,且CFFUT柱极限承载力一定程度上与CFRP-钢管混凝土柱相当。建立了CFFUT圆柱轴压极限承载力理论计算模型,并通过有限元模拟验证,理论值、模拟值和试验结果吻合较好。

     

  • 图  1  碳纤维增强聚合物(CFRP)-超高性能混凝土(UHPC)组合管混凝土(CFFUT)柱示意图

    Figure  1.  Sketch of concrete-filled carbon fiber-reinforcedpolymer (CFRP)-ultra-high performance concrete (UHPC) tube (CFFUT) columns

    图  2  CFFUT柱制作流程

    Figure  2.  Preparation of CFFUT columns

    图  3  测量元件布置及加载装置

    Figure  3.  Measurement instruments and test setup

    N—Axial compressive force

    图  4  CFFUT柱试件典型破坏模式

    Figure  4.  Typical failure modes of CFFUT column specimens

    图  5  CFFUT柱典型轴向荷载-位移(P-Δ)曲线

    Figure  5.  Typical axial load-deformation (P-Δ) curve of CFFUT columns

    P0—Axial load of first crack of UHPC; Δ0—Axial displacement of first crack of UHPC

    图  6  不同CFRP层数柱试件P-Δ曲线

    Figure  6.  P-Δ curves of CFFUT specimens with different CFRP layer numbers

    图  7  CFFUT柱极限承载力Pu与CFRP层数ncf的关系

    Figure  7.  Relationship between bearing capacity Pu of CFFUT columns and CFRP layer numbers ncf

    图  8  不同UHPC管壁厚度CFFUT柱试件P-Δ曲线

    Figure  8.  P-Δ curves of CFFUT specimens with different UHPC tube thickness

    图  9  CFFUT柱Pu与UHPC管壁厚度tu的关系

    Figure  9.  Relationship between Pu of CFFUT columns and UHPC tube thickness tu

    图  10  不同核心混凝土强度CFFUT柱P-Δ曲线

    Figure  10.  P-Δ curves of CFFUT column specimens with different filled concrete strength

    图  11  CFFUT柱Pu与核心混凝土强度的关系

    Figure  11.  Relationship between Pu of CFFUT columns and filled concrete strength

    图  12  不同组合柱位移延性系数:(a) 类型A;(b) 类型B

    Figure  12.  Definition of ductility factor for different composite columns: (a) Type A; (b) Type B

    Δ1—Axial displacement at the intersection of peak load and initial tangent modulus; Δcu—Ultimate displacement; Et—Initial tangent modulus

    图  13  CFRP-UHPC-普通混凝土(NC)界面概念图

    Figure  13.  Schematic diagram of CFRP-UHPC-normal concrete (NC) interface

    图  14  UHPC-NC界面

    Figure  14.  Interface of UHPC- NC

    图  15  CFFUT柱与CFRP-钢管混凝土柱(CFFST)的承载力比较

    Figure  15.  Comparison of bearing capacity between CFFUT columns and concrete-filled CFRP-steel tube (CFFST) columns

    fequ—Equivalent compressive strength; ts—Thickness of steel tube; tcf—Thickness of CFRP

    图  16  CFFUT柱轴心受力示意图

    Figure  16.  Schematic diagram of CFFUT columns under uniaxial compression

    σf—Radial compressive stress of CFRP; σur—Radial compressive stress of UHPC; σuh—Circumferential tensile stress of UHPC; σcf—Circumferential tensile stress of CFRP; σc—Axial compressive stress of concrete; σuc—Axial compressive stress of UHPC

    图  17  CFFUT柱有限元模型

    Figure  17.  Finite element model of CFFUT column

    图  18  典型CFFUT柱试验和有限元破坏模式对比

    Figure  18.  Comparison of failure modes between test and FEM result of typical CFFUT column

    图  19  CFRP、UHPC和混凝土的损伤云图

    Figure  19.  Damage cloud map of CFRP, UHPC and concrete

    DAMAGEFT—Tensile damage of fiber; DAMAGEC—Compressive damage

    图  20  CFRP、UHPC和混凝土的等效塑性应变

    Figure  20.  Equivalent plastic strain of CFRP, UHPC and concrete

    PEEQ—Equivalent plastic strain

    图  21  CFFUT柱计算值Nu、模拟值Nu,FE与试验结果Pu的比较

    Figure  21.  Comparison of calculated values Nu, simulated values Nu,FE and test results Pu of CFFUT columns

    表  1  试件编号及参数

    Table  1.   Number and parameters of specimens

    No.tu/mmncffcu/MPafc/MPafts/MPaE/GPaPu/kNαΔu/mmβμ
    MA-0-0 32.8 28.9 2.62 26.5 724.0 1.000 2.429 1.000 1.14
    MA-0-U12.5 12.5 0 32.8 28.9 2.62 26.5 977.0 1.349 4.213 1.734 1.31
    MA-F0100-U12.5 12.5 1 32.8 28.9 2.62 26.5 1403.8 1.939 8.164 3.361 1.45
    MA-F0100-U20 20.0 1 32.8 28.9 2.62 26.5 1476.0 2.039 7.577 3.119 1.52
    MA-F0100-U30 30.0 1 32.8 28.9 2.62 26.5 1650.2 2.279 5.823 2.397 1.59
    MA-F0200-U12.5 12.5 2 32.8 28.9 2.62 26.5 1811.8 2.502 11.295 4.650 1.55
    MA-F0200-U30 30.0 2 32.8 28.9 2.62 26.5 2197.6 3.035 8.929 3.676 1.64
    MA-F0200-U12.5-C50 12.5 2 53.5 47.3 3.69 32.0 2186.0 3.019 9.697 3.992 1.59
    MA-F0200-U12.5-C80 12.5 2 90.4 69.6 4.13 36.8 2418.0 3.340 9.214 3.793 1.66
    MA-F0200-U12.5-C100 12.5 2 118.0 105.7 6.65 44.1 2664.2 3.680 5.424 2.233 1.31
    Notes: tu—Thickness of UHPC tube; ncf—Number of CFRP layers; fcu—Cubic compressive strength of filled concrete; fc—Axial compressive strength of filled concrete; fts—Splitting tensile strength of filled concrete; E—Elastic modulus of filled concrete; Pu—Ultimate load; α—Ratio of ultimate load between CFFUT column and contrast column (MA-0-0) ; Δu—Ultimate displacement; β—Ratio of ultimate displacement between CFFUT column and contrast column (MA-0-0); μ—Ductility factor. The letter MA denotes the monotonic axial load condition, the letter F denotes the number of CFRP layers, the letter U denotes the thickness of UHPC tube, the letter C denotes the nominal filled concrete strength, omitted when C30 filled concrete is used. For example, the MA-F0200-U12.5-C50 indicates that the load condition of specimen is monotonic axial compression, the number of CFRP layers is 2, the thickness of UHPC tube is 12.5 mm, and the nominal filled concrete strength is 50 MPa.
    下载: 导出CSV

    表  2  混凝土和UHPC配合比

    Table  2.   Mixture proportion of concrete and UHPC kg·m−3

    TypeCementSilica fumeFly ashCAGGFAGGWaterSPSteel fiber
    C30 280 70 1043 826 175 5.1
    C50 363 80 1055 738 155 9.0
    C80 455 40 1080 665 150 9.9
    C100 787 126 136 1050 189 26.0
    UHPC 787 126 136 1050 189 26.0 195
    Notes: CAGG—Coarse aggregate; FAGG—Fine aggregate; SP—Superplasticizer.
    下载: 导出CSV

    表  3  CFFUT柱计算值Nu、模拟值 Nu,FE与试验值Pu的比较

    Table  3.   Comparison of calculated values Nu, simulated values Nu,FE and test results Pu of CFFUT columns

    No.Nu/kNNu,FE/kNNu/PuNu,FE/Pu
    MA-F0100-U12.51350.01362.40.960.97
    MA- F0100-U201615.71499.41.091.02
    MA- F0100-U301917.11523.91.160.92
    MA-F0200-U12.51671.51875.10.921.03
    MA- F0200-U302238.62116.11.020.96
    MA-F0200-U12.5-C501897.20.87
    MA-F0200-U12.5-C802170.70.90
    MA-F0200-U12.5-C1002613.50.98
    下载: 导出CSV
  • [1] XIAO Y, HE W H, MAO X Y, et al. Confinement design of CFT columns for improved seismic performance[C]//Proceedings of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003). Taipei, 2003: 217-226.
    [2] 王庆利, 赵颖华, 顾威. 圆截面CFRP-钢复合管混凝土结构的研究[J]. 沈阳建筑工程学院学报(自然科学版), 2003, 19(4):272-274.

    WANG Qingli, ZHAO Yinghua, GU Wei. Presumption on the concrete filled circular CFRP-steel composite tube structures[J]. Journal of Shenyang Jianzhu University (Natural Science),2003,19(4):272-274(in Chinese).
    [3] XIAO Y, HE W H, CHOI K K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering,2005,131(3):488-497. doi: 10.1061/(ASCE)0733-9445(2005)131:3(488)
    [4] PARK J W, HONG Y K, HONG G S, et al. Design formulas of concrete filled circular steel tubes reinforced by carbon fiber reinforced plastic sheets[J]. Procedia Engineering,2011,14(1):2916-2922.
    [5] SUNDARRAJA M C, PRABHU G G. Experimental study on CFST members strengthened by CFRP composites under compression[J]. Journal of Constructional Steel Research,2012,72:75-83. doi: 10.1016/j.jcsr.2011.10.014
    [6] TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. doi: 10.1260/136943307780150814
    [7] OSTROWSKI K, DUDEK M, SADOWSKI L. Compressive behaviour of concrete-filled carbon fiber-reinforced polymer steel composite tube columns made of high performance concrete[J]. Composite Structures,2020,234:111668. doi: 10.1016/j.compstruct.2019.111668
    [8] 郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131. doi: 10.14006/j.jzjgxb.2019.05.012

    GUO Ying, XU Tianxiang, LIU Jiepeng. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columns[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese). doi: 10.14006/j.jzjgxb.2019.05.012
    [9] 焦楚杰, 李松, 崔力仕, 等. CFRP约束钢管-活性粉末混凝土短柱轴压性能[J]. 复合材料学报, 2021, 38(2):439-448. doi: 10.13801/j.cnki.fhclxb.20200608.003

    JIAO Chujie, LI Song, CUI Lishi, et al. Axial compression behaviour of CFRP confined reactive power concrete filled steel tube stub columns[J]. Acta Materiae Compositae Sinica,2021,38(2):439-448(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200608.003
    [10] TOUTANJI H. Design equations for concrete columns confined with hybrid composite materials[J]. Advanced Composite Materials,2001,10(2-3):127-138. doi: 10.1163/156855101753396609
    [11] 于峰. PVC-FRP管混凝土柱力学性能的试验研究与理论分析[D]. 西安: 西安建筑科技大学, 2007.

    YU Feng. Experimental study and theoretical analysis on mechanical behavior of PVC-FRP confined concrete column[D]. Xi'an: Xi'an University of Architecture and Technology, 2007(in Chinese).
    [12] JIANG S F, MA S L, WU Z Q. Experimental study and theoretical analysis on slender concrete-filled CFRP-PVC tubular columns[J]. Construction and Building Materials,2014,53:475-487. doi: 10.1016/j.conbuildmat.2013.11.089
    [13] FAKHARIFAR M, CHEN G D. Compressive behavior of FRP-confined concrete-filled PVC tubular columns[J]. Composite Structures,2016,141:91-109. doi: 10.1016/j.compstruct.2016.01.004
    [14] GAO C, HUANG L, YAN L B, et al. Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement[J]. Composites Part B: Engineering,2019,162:178-197. doi: 10.1016/j.compositesb.2018.10.102
    [15] ZHANG H Q, HADI M N S. Geogrid-confined pervious geopolymer concrete piles with FRP-PVC confined concrete core: Concept and behaviour[J]. Construction and Building Materials,2019,211:12-25. doi: 10.1016/j.conbuildmat.2019.03.231
    [16] 李晓飞, 黄紫青, 蒋治鑫, 等. 轴压下CFRP-钢管约束混凝土柱试验研究[J]. 广西大学学报(自然科学版), 2019, 44(1):68-76.

    LI Xiaofei, HUANG Ziqing, JIANG Zhixin, et al. Experimental study on axial compression of CFRP-steel tube confined concrete short column[J]. Journal of Guangxi University (Natural Science Edition),2019,44(1):68-76(in Chinese).
    [17] 赵筠, 师海霞, 路新瀛. 超高性能混凝土基本性能与试验方法[M]. 北京: 中国建材工业出版社, 2019.

    ZHAO Jun, SHI Haixia, LU Xinying. Fundamental characteristics and test methods of ultra-high performance concrete[M]. Beijing: China Building Materials Press, 2019(in Chinese).
    [18] SUN C S, BABARINDE O, FARZANA N, et al. Use of UHPC jackets in coastal bridge piles[C]//The 2nd International Interactive Symposium on Ultra-high Performance Concrete. Albany, 2019.
    [19] XIE J, FU Q, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials,2019,204:643-658. doi: 10.1016/j.conbuildmat.2019.01.220
    [20] HADI M N S, ALGBURI A H M, SHEIKH M N, et al. Axial and flexural behaviour of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fibre reinforced polymer wrapping[J]. Construction and Building Materials,2018,172:717-727. doi: 10.1016/j.conbuildmat.2018.03.196
    [21] 吴香国. 基于耐久性的超高性能纤维改性混凝土叠合墩柱设计概念[J]. 华北水利水电学院学报, 2012, 33(6):73-77.

    WU Xiangguo. Design conception of ultra-high-performance fiber reinforced concrete hybrid pier with durability consideration[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2012,33(6):73-77(in Chinese).
    [22] 林上顺, 黄卿维, 陈宝春, 等. 跨海大桥U-RC组合桥墩设计[J]. 交通运输工程学报, 2017, 17(4):55-65. doi: 10.3969/j.issn.1671-1637.2017.04.006

    LIN Shangshun, HUANG Qinwei, CHEN Baochun, et al. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering,2017,17(4):55-65(in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.006
    [23] 杨医博, 杨凯越, 吴志浩, 等. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究[J]. 材料导报, 2017, 31(12):120-124. doi: 10.11896/j.issn.1005-023X.2017.023.017

    YANG Yibo, YANG Kaiyue, WU Zhihao, et al. An experimental study on the influence of reinforced ultra-high performance concrete permanent template to short column's mechanical property[J]. Materials Reports,2017,31(12):120-124(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.017
    [24] 单波, 刘志, 肖岩, 等. RPC预制管混凝土组合柱组合效应试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(3):88-96. doi: 10.16339/j.cnki.hdxbzkb.2017.03.011

    SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental research on composite action of concrete-filled RPC tube under axial load[J]. Journal of Hunan University (Natural Sciences),2017,44(3):88-96(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2017.03.011
    [25] TIAN H W, ZHOU Z, ZHANG Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork[J]. Engineering Structures,2020,210:110403. doi: 10.1016/j.engstruct.2020.110403
    [26] WILLE K, EI-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [27] 王俊颜, 郭君渊, 肖汝诚, 等. 高应变强化超高性能混凝土的裂缝控制机理和研究[J]. 土木工程学报, 2017, 50(11):10-17.

    WANG Junyan, GUO Junyuan, XIAO Rucheng, et al. Study on crack control mechanism of strain-hardening ultra-high performance concrete[J]. China Civil Engineering Journal,2017,50(11):10-17(in Chinese).
    [28] 王庆利. CFRP-钢管混凝土[M]. 北京: 科学出版社, 2017.

    WANG Qingli. Concrete filled CFRP-Steel tube[M]. Beijing: Science Press, 2017(in Chinese).
    [29] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [30] 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CBMF 37—2018/T/CCPA 7—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Fundamental characteristics and test methods of ultra-high performance concrete: T/CBMF 37—2018/T/CCPA 7—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [31] 中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146: 2003[S]. 北京: 中国计划出版社, 2003.

    China Engineering Construction Standardization Association. Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate: CECS 146: 2003[S]. Beijing: China Planning Press, 2003(in Chinese).
    [32] CUI C, SHEIKH S A. Experimental study of normal and high strength concrete confined with fiber reinforced polymers[J]. Journal of Composites for Construction,2010,14(5):553-561. doi: 10.1061/(ASCE)CC.1943-5614.0000116
    [33] AALETI S, SRITHARAN S. Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application[J]. Journal of Bridge Engineering,2019,24(6):04019041. doi: 10.1061/(ASCE)BE.1943-5592.0001404
    [34] ZHANG Y, ZHU P, LIAO Z Q, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials,2020,235:117431. doi: 10.1016/j.conbuildmat.2019.117431
    [35] FENG S, XIAO H G, LIU R, et al. The bond properties between ultra-high-performance concrete and normal strength concrete substrate: Bond macro-performance and overlay transition zone microstructure[J]. Cement and Concrete Composites,2022,128:104436. doi: 10.1016/j.cemconcomp.2022.104436
    [36] 朱和国, 张爱文. 复合材料原理[M]. 北京: 国防工业出版社, 2013.

    ZHU Heguo, ZHANG Aiwen. The fundamental principles of composites[M]. Beijing: National Defense Industry Press, 2013(in Chinese).
    [37] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  1069
  • HTML全文浏览量:  518
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-06-13
  • 录用日期:  2022-06-14
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回