Facilely synthesis of SnO2 dots decorated reduced graphene oxide with ultra-long lithium storage life
-
摘要: 在锂离子电池中,商用阳极石墨的利用率已经接近其理论容量的极限(372 mAh·g−1),一些金属基复合材料因其更高的储锂能力和更稳定的循环性能而受到广泛关注。本文采用改性的胶体聚沉法及随后空气煅烧的工艺制备了SnO2量子点修饰的还原氧化石墨烯(rGO/SnO2)。作为锂离子电池阳极,rGO/SnO2具有优异的储锂性能。在1和2 A·g−1电流密度下,rGO/SnO2-70电极在
1000 次循环后依然可以分别保留584和378 mAh·g−1的可逆放电比容量。这主要是因为SnO2量子点“壳”不仅可以提供大量的活性位点,缩短Li+脱/嵌过程中的传输路径长度,并可以阻止充放电过程中rGO纳米片的堆叠,从而实现了SnO2较高的利用率;rGO“核”能够实现电子的快速传输,缓冲SnO2的体积变化,从而使rGO/SnO2具有良好的循环稳定性。本研究可以为高倍率、超长循环寿命的复合阳极材料的设计提供参考。Abstract: In lithium-ion batteries (LIBs), commercial anodic graphite has reached its limit of theoretical capacity and some metal-based materials are drawing substantial attention due to their higher Li+ storage ability and better cyclic performance. In this paper, SnO2 dots are facilely bridged chemically with reduced graphene oxide (rGO) nanosheets via a modified colloidal coagulation synthesis and a following calculation process in air. As anodes for LIBs, the obtained rGO/SnO2 shows excellent electrochemical performances. At 1 and 2 A·g−1, the rGO/SnO2-70 electrode delivers stable reversible capacities of 584 and 378 mAh·g−1 after1000 cycles, respectively. It is believed that SnO2 dots shorten the Li+ transport path length and support more electroactive sites for Li+ alloying/de-alloying reactions, leading to high reversible capacities. Meanwhile, the bridged chemically SnO2 dots could prevent the re-stacking of rGO nanosheets. On the other hand, the conductive underneath core-rGO enables an ultrafast electron transport and accommodates the volume changes of the SnO2 dots, leading to a good cyclic stability. This study provides a reference for the novel anodic carbonaceous materials with high capacity at high current density and ultra-long cyclic life.-
Keywords:
- Lithium-ion battery /
- Graphene /
- Dot /
- Sol-gel method /
- SnO2
-
-
表 1 rGO/SnO2与已报道SnO2包覆rGO复合材料的制备工艺及性能对比
Table 1 Comparison of fabrication and performance of rGO/SnO2 with other previously reported SnO2-based composites
Composite Fabrication process Additive Performance SnO2/rGO[21] Hydrothermal, H2 reduction Urea, CTAB 598 mAh·g−1, 200 cycle, 1 A·g−1 SnO2/Graphene[5] Solventothermal PEG 703.1 mAh·g−1, 900 cycle, 0.5 A·g−1 SnO2 NPs/rGO[22] Hydrothermal, mixing Vitamin C 400 mAh·g−1, 100 cycle, 1 A·g−1 SnO2@GS[23] Hydrothermal EG, SC, CH3COONa 537 mAh·g−1, 625 cycle, 6 A·g−1 SNG[24] Hydrothermal EG 613 mAh·g−1, 100 cycle, 0.8 A·g−1 Sn-1-550[25] Spray drying - 943 mAh·g−1, 80 cycle, 0.1 A·g−1 rGO/SnO2-70 Precipitation, calcination - 584 mAh·g−1, 1000 cycle, 1 A·g−1Notes: rGO: reduced graphene oxide; GS: graphene sponges; SNG: SnO2/NiFe2O4/graphene; PEG: polyethylene glycol, SC: sodium citrate -
[1] HONG C, TAO R, TAN S, et al. In situ cyclized polyacrylonitrile coating: Key to stabilizing porous high-entropy oxide anodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2024.
[2] GE S, CUI L, YU K, et al. Basket-like POMs and ZnO co-modified CNFs as anode of high-efficient lithium-ion batteries[J]. Journal of Energy Storage, 2024, 93: 112312. DOI: 10.1016/j.est.2024.112312
[3] LAN X, XIONG Y, LIU J, et al. Insight into reversible conversion reactions in SnO2-based anodes for lithium storage: a review[J]. Small, 2022, 18(26): 2201110. DOI: 10.1002/smll.202201110
[4] LIU G L, ZHAO Z H, SHEN J K, et al. SnO2/metal organic complex composite derived from low-temperature activated metal organic complex for advanced lithium storage[J]. Rare Metals, 2024, 43: 3032-3043. DOI: 10.1007/s12598-024-02656-2
[5] LI H, ZHUANG Y, QI H, et al. In situ hydrogen bonding-mediated self-synthesis of graphene-coated SnO2 as anode materials for lithium-ion batteries[J]. Energy Technology, 2024, 12(6): 2400042. DOI: 10.1002/ente.202400042
[6] FAN L, ZHANG Y, ZHOU H, et al. Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery[J]. Journal of Materials Science & Technology, 2021, 88: 250-257.
[7] WU C P, XIE K X, HE J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance[J]. Rare Metals, 2021, 40: 48-56. DOI: 10.1007/s12598-020-01623-x
[8] CHENG Y, WANG S, ZHOU L, et al. SnO2 quantum dots: Rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage[J]. Small, 2020, 16(26): 2000681. DOI: 10.1002/smll.202000681
[9] FAN X, HE Y, HOU X. C3N4-template synthesis of sheet-like Fe2O3 intercalated by reduced graphene oxide as an advanced anode for lithium ion batteries[J]. Journal of Energy Storage, 2024, 98: 112966. DOI: 10.1016/j.est.2024.112966
[10] LI S, XIE W, WANG S, et al. Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 17139-17145. DOI: 10.1039/C4TA03907F
[11] SANG J, LIU K, ZHANG X, et al. Enabling high-performance sodium battery anodes by complete reduction of graphene oxide and cooperative in-situ crystallization of ultrafine SnO2 nanocrystals[J]. Energy & Environmental Materials, 2023, 6(3): e12431.
[12] JIA X, DU Y, XIE F, et al. Enhancing electron/ion transport in SnO2 quantum dots decorated polyaniline/graphene hybrid fibers for wearable supercapacitors with high energy density[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17937-17945.
[13] YANG S, FU P, CHEN Z, et al. Mxene-reduced graphene oxide heterostructures as binder-free cathodes for zinc-ion hybrid supercapacitors with superior performance[J]. Journal of Power Sources, 2024, 623: 235466. DOI: 10.1016/j.jpowsour.2024.235466
[14] CAO D, HAO Z, WANG Y, et al. Platinum nanocrystals embedded in three-dimensional graphene for high-performance Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 40921-40929.
[15] YANG H, WANG B, LI Y, et al. Nano SnO2 loaded on N-doped carbon nanorods derived from metal-complex covalent organic frameworks for anode in lithium ion batteries[J]. Journal of Alloys and Compounds, 2023, 945: 169302. DOI: 10.1016/j.jallcom.2023.169302
[16] JIANG W, XIONG D, WU S, et al. Carbon nanosheets wrapped in SnO2-TiO2 nanoparticles as a high performance anode material for lithium ion batteries[J]. Ceramics International, 2022, 48(15): 27172-27181.
[17] WANG X, SUN N, DONG X, et al. The porous spongy nest structure compressible anode fabricated by gas forming technique toward high performance lithium ion batteries[J]. Journal of Colloid and Interface Science, 2022, 623: 584-594. DOI: 10.1016/j.jcis.2022.05.067
[18] YAN J, ZHOU C, WANG L, et al. Effects of pulverization and dead Sn accumulation in SnO2 nanorods grown on carbon cloth on their electrochemical performances as the anode in lithium ion batteries[J]. ACS Applied Energy Materials, 2022, 5(3): 3536-3544.
[19] CHEN X, LU H, LEI Y, et al. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capacity[J]. Journal of Materials Science & Technology, 2022, 107: 165-171.
[20] YU H, ZHANG Y, LI L, et al. SnO2 nanoparticles embedded in 3D hierarchical honeycomb-like carbonaceous network for high-performance lithium ion battery[J]. Journal of Alloys and Compounds, 2021, 858: 157716.
[21] LI X, ZHAO Z, DENG Y, et al. Interfacial engineering in SnO2-embedded graphene anode materials for high performance lithium-ion batteries[J]. Scientific Reports, 2024, 14: 16751.
[22] CHEN X, CAI R, LIU P, et al. Preparation and Electrochemical Performance of Reduced Graphene and SnO2 Nanospheres Composite Materials for Lithium-Ion Batteries and Sodium-Ion Batteries[J]. 2021, ChemistrySelect, 2021, 6(13): 3192-3198.
[23] FAN L, ZHANG Y, ZHOU H, et al. Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery[J]. Journal of Materials Science & Technology, 2021, 88: 250-257.
[24] SHEN H, XIA X, YAN S, et al. SnO2/NiFe2O4/graphene nanocomposites as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 853: 157017. DOI: 10.1016/j.jallcom.2020.157017
[25] GAO X, TANG Z, MENG M, et al. Synthesis of crumpled SnO2/rGO nanocomposites with 2D-in-3D structure and high performance[J]. Materials Chemistry and Physics, 2020, 253: 123298. DOI: 10.1016/j.matchemphys.2020.123298
-
期刊类型引用(2)
1. 张永文,杨郁,杨倩倩,李艳安,禹兴海. 生物炭/聚乙二醇复合相变材料的制备及其性能研究. 化学工程师. 2024(06): 6-11 . 百度学术
2. 江慧珍,罗凯,王艳,费华,吴登科,叶卓铖,曹雄金. 废弃生物质复合相变材料的构建与应用. 化工进展. 2024(07): 3934-3945 . 百度学术
其他类型引用(6)
-
目的
在锂离子电池中,商用阳极石墨的利用率已经接近其理论容量的极限(372 mAh·g)。因此,开发高比容量、高性能复合材料具有广阔的应用前景。本文采用改性的胶体聚沉法及随后空气煅烧的工艺制备了SnO量子点修饰的还原氧化石墨烯(rGO/SnO);1000次循环后,rGO/SnO-70依然可以分别保留584(1 A·g)和378 mAh·g(2 A·g)的可逆放电比容量;本研究可以为高倍率、超长循环寿命的复合阳极材料的设计提供参考。
方法采用改性的胶体聚沉法及随后空气煅烧的工艺制备了rGO/SnO;分别采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术对rGO/SnO复合材料进行了表征;采用热重(TG)分析仪和Brunauer-Emmett-Teller(BET)分别测试了样品种SnO的比重和rGO/SnO的比表面积。涂布电极并在手套箱中组装CR-2032电池。采用恒流充放电技术、循环伏安法在0.02-3 V范围内测试、分析电极的电化学性能。
结果XRD结果表明rGO/SnO已经被成功制备。Raman证实了石墨烯组分的存在。TG分析了复合材料中SnO的质量百分比;BET测试了rGO/SnO的比表面积,其大比表面积有利于Li的转移;SEM和TEM证明SnO量子点成功修饰了rGO。恒流充放电结果表明,rGO/SnO-70 显示出良好的电化学性能,其比容量高于rGO/SnO-40,循环性能比rGO/SnO-100更稳定。1000次循环后,rGO/SnO-70的容量分别可以保持在584(1 A·g)和379 mAh·g(2 A·g)。通过rGO/SnO-70初始3次充放电曲线和对应的dQ/dV曲线研究了其储锂过程。上述结果表明,rGO/SnO-70中SnO与Sn的相互转化是高度可逆的,这也是其具有高储锂比容量的原因之一。倍率充放电激活后CV曲线表明放电过程中Sn组分的合金化程度在增加,这也是rGO/SnO-70能保持高比容量的主要原因。与已报道SnO石墨烯复合材料相比,rGO/SnO的优势主要体现在制备方法成本低、无需添加剂和储锂性能好等方面。20次充放电激活后,rGO/SnO-70的XPS曲线中Sn 3d特征峰证实了SnO的存在。rGO/SnO-70的储锂机制为:SnO + ( + 4)Li + ( + 4)e ↔ SnLi + 2LiO (0 ≤ x ≤ 4.4),SnO的完全可逆比容量高达1495 mAh·g,这也是rGO/SnO-70能保持高比容量的主要原因之一。作为储锂阳极材料,rGO/SnO具有两个明显的优点。一方面,rGO“芯”不仅可以作为电子导体,在脱/嵌锂过程中加速反应动力学,还可以有效地缓冲SnO的体积变化,从而实现rGO/SnO稳定的储锂性能。另一方面,SnO量子点可以防止rGO的重新堆叠,缩短了Li的扩散距离,并增加了电极与电解液的接触面积,从而提高了rGO/SnO的倍率比容量。
结论(1)采用胶体聚沉过程及随后空气煅烧工艺制备了rGO/SnO复合材料。(2)rGO/SnO-70表现出优异的储锂性能:1000次循环后容量保持在584(1 A·g)和378 mAh·g(2 A·g)。(3)本研究可以为高功率、超长循环寿命的阳极复合材料的设计提供一个参考。
-
在锂离子电池中,商用阳极石墨的利用率已经接近其理论容量的极限(372 mAh·g-1),一些金属基复合材料因其更高的储锂能力和更稳定的循环性能而受到广泛关注。
本文采用改性的胶体聚沉法及随后空气煅烧的工艺制备了SnO2量子点修饰的还原氧化石墨烯(rGO/SnO2)。研究表明,rGO/SnO2具有优异的储锂性能。在1和2 A·g-1电流密度下,rGO/SnO2-700电极在1000次循环后依然可以分别保留584和378 mAh·g-1的可逆放电比容量。这主要是因为SnO2量子点“壳”不仅可以提供大量的活性位点,缩短Li+脱/嵌过程中Li+的传输路径长度,并可以阻止充放电过程中rGO纳米片的堆叠,从而实现了SnO2较高的利用率;rGO“核”能够实现电子的快速传输,缓冲SnO2的体积变化,从而使rGO/SnO2具有良好的循环稳定性。本研究可以为高电流密度下高容量、超长循环寿命的新型阳极复合材料的设计提供参考。
rGO/SnO2-40、rGO/SnO2-70和rGO/SnO2-100超长储锂稳定性能的对比