超低含量二氧化钛纳米颗粒显著提高聚醚酰亚胺复合薄膜的击穿强度与能量密度

Significant improvements in breakdown strength and energy density of polyetherimide composite films enabled by ultralow contents of titanium dioxide nanoparticles

  • 摘要: 聚合物基电介质电容器因其高击穿强度、轻质、柔性和易加工等优点,在国防、能源存储、新能源汽车、电力电子和医疗等领域得到广泛应用。然而,聚合物基薄膜电容器的低介电常数限制了其能量密度,制约了其在高科技领域的应用。为提高能量密度,本研究采用流延成膜法,将超低含量二氧化钛纳米颗粒(TiO2)掺入聚醚酰亚胺(PEI)基体中,制备了TiO2/PEI复合薄膜。实验结果表明,TiO2的掺入增强了复合薄膜的界面极化,从而显著提高了介电常数(当TiO2含量为0.8vol.%时,介电常数达到4.59@100 Hz,比纯PEI提高22.15%)。此外,TiO2的掺杂抑制了复合薄膜内部电荷的迁移和电树枝的生长,提高了击穿强度。0.2vol.% TiO2的TiO2/PEI复合薄膜在400 MV/m电场下表现出8.82 J/cm3的最高能量密度,相较纯PEI提高了122.93%。通过COMSOL模拟分析发现,低含量TiO2掺入有效抑制了复合薄膜的漏电流密度,进一步提高了击穿强度。本研究为制备高能量密度聚合物基介电复合薄膜提供了有效的解决方案,具有广泛的应用前景。

     

    Abstract: Polymer-based dielectric capacitors are widely utilized in various fields, including defense, energy storage, new energy vehicles, power electronics, and medical applications, owing to their high breakdown strength, lightweight, flexibility, and ease of processing. However, the low dielectric constant of polymer-based film capacitors limits their energy density, thereby restricting their application in advanced technologies. To enhance energy density, this study adopts a casting method to incorporate ultra-low content titanium dioxide nanoparticles (TiO2) into a polyetherimide (PEI) matrix, thereby preparing TiO2/PEI composite films. Experimental results demonstrate that the incorporation of TiO2 enhances the interfacial polarization of the composite films, leading to a significant increase in the dielectric constant (with a dielectric constant of 4.59@100 Hz when the TiO2 content is 0.8vol.%, representing a 22.15% increase compared to pure PEI). Furthermore, TiO2 doping suppresses charge migration and dendritic growth within the composite films, thereby improving the breakdown strength. The TiO2/PEI composite film with 0.2vol.% TiO2 exhibits a maximum energy density of 8.82 J/cm3 under an electric field of 400 MV/m, a 122.93% improvement compared to pure PEI. COMSOL simulation analysis reveals that the low TiO2 content effectively reduces the leakage current density of the composite films, further enhancing the breakdown strength. This study provides an effective solution for the fabrication of high energy density polymer-based dielectric composite films, offering promising prospects for practical applications.

     

/

返回文章
返回