留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能

刘成宝 唐飞 朱晨 毛栋星 钱君超 陈志刚

刘成宝, 唐飞, 朱晨, 等. WO3-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004
引用本文: 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004
LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004
Citation: LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004

WO3-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20200622.004
基金项目: 江苏省自然科学基金(BK20180103;BK20180971);江苏省高校自然科学基金(16KJA430008);江苏省高校优势学科建设工程资助项目;江苏高校水处理技术与材料协同创新中心;苏州市科技发展计划项目(重点产业技术创新—前瞻性应用研究)(SYG201742;SYG201818);苏州市微纳光电材料与传感器重点实验室资助(SZS201812)
详细信息
    通讯作者:

    刘成宝,博士,副教授,研究方向为二维基环境功能材料的结构设计及其性能评价 E-mail:lcb@mail.usts.edu.cn

  • 中图分类号: TB333

Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst

  • 摘要: 采用水热法合成WO3纳米棒,并通过简单的溶剂蒸发法及光沉积法实现WO3-Ag/石墨相C3N4(g-C3N4)复合光催化剂的合成。采用XRD、SEM、TEM等对材料进行全面表征。结果表明,由于成功构建了Z型异质结,WO3-Ag/g-C3N4复合光催化剂能够拓展可见光响应,有效抑制光生电子与空穴复合。最佳工艺条件下所得WO3-Ag/g-C3N4复合光催化剂在100 min时光催化降解罗丹明B (RhB)的效率可达96.8%,且WO3-Ag/g-C3N4复合光催化剂具有优异的稳定性。光催化机制表明,光催化实验中真正的活性物质为羟基自由基与超氧自由基。

     

  • 图  1  不同水热时间合成WO3的XRD图谱

    Figure  1.  XRD patterns of WO3 with different hydrothermal times

    图  2  不同WO3质量分数的WO3/g-C3N4复合光催化剂的XRD图谱

    Figure  2.  XRD patterns of WO3/g-C3N4 composite photocatalysts with different mass fractions of WO3

    图  3  不同Ag质量分数的WO3-Ag/g-C3N4复合光催剂的XRD图谱

    Figure  3.  XRD patterns of WO3-Ag/g-C3N4 composite photocatalysts with different mass fractions of Ag

    图  4  不同水热时间的WO3的SEM图像

    Figure  4.  SEM images of WO3 with different hydrothermal times ((a)6 h; (b)8 h; (c)10 h; (d)12 h; (e)12 h)

    图  5  WO3-Ag/g-C3N4复合光催化剂的TEM图像(a)和HRTEM图像(b)

    Figure  5.  TEM (a) and HRTEM (b) images of WO3-Ag/g-C3N4 composite photocatalysts

    图  6  WO3、WO3/g-C3N4和WO3-Ag/g-C3N4复合光催化剂的UV-Vis漫反射图谱(a)和禁带宽度图谱(b)

    Figure  6.  UV-Vis diffuse reflectance spectra (a) and band gap spectra (b) of WO3, WO3/g-C3N4 and WO3-Ag/g-C3N4 composite photocatalysts

    图  7  WO3/g-C3N4和WO3-Ag/g-C3N4复合光催化剂的荧光光谱

    Figure  7.  Fluorescence spectra of WO3/g-C3N4 and WO3-Ag/g-C3N4 composite photocatalysts

    图  8  纯g-C3N4及WO3/g-C3N4复合光催化剂的N2脱附-吸附曲线

    Figure  8.  N2 desorption-adsorption curves of pure g-C3N4 and WO3/g-C3N4 composite photocatalyst

    图  9  WO3-Ag/g-C3N4复合光催化剂的XPS图谱: (a) Survey; (b) C 1s; (c) N 1s; (d) O 1s; (e) W 4f; (f) Ag 3d

    Figure  9.  XPS spectra of WO3-Ag/g-C3N4 composite photocatalyst: (a) Survey; (b) C 1s; (c) N 1s; (d) O 1s; (e) W 4f; (f) Ag 3d

    图  10  WO3/g-C3N4和WO3-Ag/g-C3N4复合光催化剂可见光降解RhB曲线((a), (b))及其反应动力学拟合((c), (d))

    Figure  10.  Visible light degradation curves ((a), (b)) and reaction kinetics fitting ((c), (d)) of RhB by WO3/g-C3N4 and WO3-Ag/g-C3N4 composite photocatalysts

    图  11  WO3-Ag/g-C3N4复合光催化剂降解RhB溶液的UV-Vis漫反射图谱

    Figure  11.  UV-Vis diffuse reflectance spectra of WO3-Ag/g-C3N4 composite photocatalyst degradating RhB solution

    图  12  WO3-Ag/g-C3N4复合光催化剂4次循环降解RhB染料的结果

    Figure  12.  Degradation results of RhB for four times with existence of WO3-Ag/g-C3N4 composite photocatalyst

    图  13  WO3-Ag/g-C3N4复合光催化剂在循环光催化实验前后的XRD图谱

    Figure  13.  XRD patterns of WO3-Ag/g-C3N4 composite photocatalyst before and after cyclic photocatalytic experiment

    图  14  WO3-Ag/g-C3N4复合光催化剂添加不同捕获剂的RhB降解曲线

    Figure  14.  RhB degradation curves of WO3-Ag/g-C3N4 composite photocatalyst with different trapping agents

    图  15  WO3-Ag/g-C3N4复合光催化剂的光催化机制

    Figure  15.  Photocatalytic mechanism of WO3-Ag/g-C3N4 composite photocatalyst

    VB—Valence band; CB—Conduction band

    表  1  WO3/石墨相C3N4 (g-C3N4)和WO3-Ag/g-C3N4复合光催化剂成分配比

    Table  1.   Compositions of WO3/graphitic C3N4 (g-C3N4) and WO3-Ag/g-C3N4 composite photocatalysts

    SampleWO3/wt%Ag/wt%
    5WO3/g-C3N4 5
    10WO3/g-C3N4 10
    15WO3/g-C3N4 15
    20WO3/g-C3N4 20
    15WO3-Ag/g-C3N4 15 1
    15WO3-2Ag/g-C3N4 15 2
    15WO3-3Ag/g-C3N4 15 3
    下载: 导出CSV
  • [1] ALI I, PARK S, KIM J O. Modeling the photocatalytic reactions of g-C3N4-TiO2 nanocomposites in a recirculating semi-batch reactor[J]. Journal of Alloys and Compounds,2020,821:153498. doi: 10.1016/j.jallcom.2019.153498
    [2] ZHANG Q Z, DENG J J, XU Z H, et al. High-efficiency broadband C3N4 photocatalysts: Synergistic effects from upconversion and plasmons[J]. ACS Catalysis,2017,7(9):6225-6234. doi: 10.1021/acscatal.7b02013
    [3] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4 based phtotocatalysts[J]. Applied Surface Science,2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030
    [4] YANG Y R, QIU M, LI L, et al. A direct Z-scheme van der Waals heterojunction (WO3·H2O/g-C3N4) for highly efficient overall water splitting under visible-light[J]. Solar RRL,2018,2(9):1800148.
    [5] ZHAO L Y, XI X L, LIU Y S, et al. Facile synthesis of WO3 micro/nanostructres by paperassisted calcination for visible light driven photocatalysis[J]. Chemical Physics,2020,528(11):515-521.
    [6] CUI L F, DING X, WANG Y G, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light[J]. Applied Surface Science,2017,391:202-210. doi: 10.1016/j.apsusc.2016.07.055
    [7] XIAO T T, TANG Z, YANG Y, et al. Insitu construction of hierarchical WO3 /g-C3N4 composite hollow microsphere Z-Scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental,2018,220:417-428. doi: 10.1016/j.apcatb.2017.08.070
    [8] KATSUMATA H, TACHIA Y, SUZUKIB T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Advances,2014,4(41):21405-21409.
    [9] CHEN J Y, XIAO X Y, WANG Y, et al. Ag nanoparticles decrorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activty for oganic pollutants degradation[J]. Applied Surface Science,2018,467:1000-1010.
    [10] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4):516-535.

    YAO Guoying, LIU Qinglu, ZHAO Zongyan. Applications of localized surface plasmon resonance effect in photocatalysis[J]. Progress in Chemistry,2019,31(4):516-535(in Chinese).
    [11] QIAN L, HOU Y P, YU Z B, et al. Metal-induced Z-scheme CdS/Ag/g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag[J]. Molecular Catalysis,2018,458:43-51. doi: 10.1016/j.mcat.2018.07.027
    [12] HE K L, XIE J, LUO X Y, et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts[J]. Chinese Journal of Catalysis,2017,38(2):240-252. doi: 10.1016/S1872-2067(17)62759-1
    [13] 中国国家标准化管理委员会. 光催化纳米材料光解指数测试方法: GB/T 30452—2013[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of of the people’s Republic of China. Measurement method for photolysis performance index of photocatalytic nano-materials: GB/T 30452—2013[S]. Beijing: China Standards Press, 2014(in Chinese).
    [14] 牟婉君, 谢翔, 李兴亮, 等. 六方相氧化钨的合成及其电催化还原氢的研究[J]. 人工晶体学报, 2014, 43(8):2102-2106. doi: 10.3969/j.issn.1000-985X.2014.08.039

    MU Wanjun, XIE Xiang, LI Xiliang, et al. Synthesis and electrocatalytic reduction for hydrogen of hexagonal WO3[J]. Journal of Synthetic Crystals,2014,43(8):2102-2106(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.08.039
    [15] HU K M, ZHANG W M, ZHONG Z Y, et al. Effect of surface layer thickness on buckling and vibration of nonlocal nanowires[J]. Physics Letters A,2014,378(7-8):650-654.
    [16] HUANG L Y, XU H, LI Y P, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions,2013,42(24):8606-8616. doi: 10.1039/c3dt00115f
    [17] CHENG C, SHI J W, HU Y C, et al. WO3/g-C3N4 composites: One-pot preparation and enhanced photocatalytic H2 production under visible light irradiation[J]. Nanotechnology,2017,28(16):164002. doi: 10.1088/1361-6528/aa651a
    [18] CAO S W, LIU X F, YUAN Y P, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts[J]. Applied Catalysis B: Environmental,2014,147:940-946. doi: 10.1016/j.apcatb.2013.10.029
    [19] XUE J J, MA S S, ZHOU Y M, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces,2015,7(18):9630-9637.
    [20] CHANG C, FU Y, HU M, et al. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B: Environmental,2013,142-143:553-560.
    [21] WEI H, MCMASTER W A, TAN Z Y, et al. Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C,2017,121(40):22114-22122. doi: 10.1021/acs.jpcc.7b06493
    [22] DING J, LIU Q Q, ZHANG Z Y, et al. Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Applied Catalysis B: Environmental,2015,165:511-518. doi: 10.1016/j.apcatb.2014.10.037
    [23] CHEN Y F, HUANG W X, HE D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible light irradiation[J]. ACS Applied Materials & Interfaces,2014,6(16):14405-14414.
    [24] ACHARYA R, PARIDA K. A review on TiO2/g-C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation[J]. Journal of Environmental Chemical Engineering,2020,8(4):103896. doi: 10.1016/j.jece.2020.103896
    [25] LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process[J]. Applied Catalysis B: Environmental,2017,217:591-602. doi: 10.1016/j.apcatb.2017.05.086
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1262
  • HTML全文浏览量:  485
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 录用日期:  2020-06-05
  • 网络出版日期:  2020-06-23
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回