Shear performance and steel fiber reinforcement mechanism of prestressed ultra-high performance concrete rectangular beams
-
摘要:
为研究钢纤维对预应力超高性能混凝土(UHPC)矩形梁抗剪性能的影响,本文以钢纤维的掺量、尺寸和形状为变量,开展了基于四点加载法的矩形梁抗剪试验,重点分析荷载-挠度关系、裂缝扩展规律及破坏模式。采用塑性损伤模型对抗剪行为进行数值模拟,系统探讨了不同设计参数下抗剪承载力对钢纤维掺量的敏感性。通过极限平衡法对抗剪机理进行了分析,并与设计规范进行对比。结果表明,钢纤维能够显著抑制裂缝扩展,掺量从1%提高至2.5%可使抗剪承载力提升10.7%;弯钩型钢纤维能使结构延性较平直型钢纤维提高41.7%。参数分析显示,在较大剪跨比或较低配筋率条件下,钢纤维掺量的增加对抗剪承载力的提升效果更为显著。美国规范和极限平衡法能够以平均误差小于5%的精度较准确地预测抗剪承载力,而法国和德国规范尽管单独考虑了钢纤维的贡献,但预测结果偏于保守。
Abstract:To investigate the effect of steel fibers on the shear performance of prestressed ultra-high performance concrete (UHPC) rectangular beams, four-point loading tests were conducted with variables including fiber content, size, and shape, focusing on load-deflection behavior, crack propagation, and failure modes. The sensitivity of shear capacity to fiber parameters under different design conditions was systematically explored using a plastic damage model by numerical simulations. Results show that the shear capacity improves by 10.7% when the fiber content increases from 1% to 2.5%, and hooked steel fibers can improve the structural ductility by 41.7% compared to straight steel fibers. Parametric analyses indicate that the effect of fiber content is more significant under larger shear span-to-depth ratios or lower reinforcement ratios. The American code and ultimate equilibrium method predict the shear capacity with an average error of less than 5%, while the French and German codes yield conservative estimates, despite accounting for fiber contributions.
-
-
图 10 UHPC矩形梁数值模型本构关系
Figure 10. Constitutive model in numerical simulation of UHPC rectangular beams
E0 is the initial elastic stiffness of the material; dc and dt are the compressive and tensile damage factors, representing the plastic damage of the material, where 0 indicates no damage and 1 indicates complete damage. εinc and εckt are the crushing strain and cracking strain. εel0c and εel0t are the initial elastic deformations. εplc and εplt are the equivalent plastic strains, while εelc and εelt are the corresponding equivalent elastic deformations
图 15 UHPC矩形梁抗剪极限状态隔离体受力分析
Figure 15. Force analysis on isolated segment of flexural-shear section at ultimate state of UHPC rectangular beams
σc is the normal stress of concrete; τc is the shear stress of concrete; ξ is the ratio of the compression zone height to the effective depth of the cross-section; b is the beam width; d is the effective depth of the cross-section; As, Ap, and Av are the total areas of tensile reinforcement, stirrups, and prestressing tendons, respectively, while σs, σp, and σv denote their corresponding stresses. σf is the fiber bridging stress. lw is the horizontal projection length of the diagonal crack. Vu is the shear capacity
表 1 UHPC配合比(单位:kg·m−3)
Table 1 UHPC mix proportions (Unit: kg·m−3)
Cement Silica fume Ground filler Quartz sand Water Superplasticizer Fiber 733 220 220 982 175 12 1%-2.5% 表 2 试件分组及参数
Table 2 Parameters of test specimens
Tension Compression Beams Fiber ft/MPa fcu/MPa Flowability/mm Content Shape Length/diameter T-λ-1 C-λ-1 B-λ-1 1% Straight 14 mm/0.22 mm 9.00 120.97 269 T-λ-1.5 C-λ-1.5 B-λ-1.5 1.5% Straight 14 mm/0.22 mm 9.31 123.73 260 T0 C0 B0 2% Straight 14 mm/0.22 mm 9.62 126.00 247 T-λ-2.5 C-λ-2.5 B-λ-2.5 2.5% Straight 14 mm/0.22 mm 9.94 128.20 236 T-S-T C-S-T B-S-T 2% Twisted 14 mm/0.22 mm 8.52 127.27 230 T-S-H C-S-H B-S-H 2% Hooked 14 mm/0.22 mm 10.38 133.27 232 T-L-6 C-L-6 B-L-6 2% Straight 6 mm/0.12 mm 9.87 128.22 248 T-L-13 C-L-13 B-L-13 2% Straight 13 mm/0.32 mm 8.95 128.67 237 Notes: ft is tensile strength; fcu is cubic compressive strength; λ is the volume fraction of steel fibers; S is the shape of the steel fibers, and L is the length of the steel fibers. T is the twisted type, and H is the hooked type. 表 3 UHPC矩形梁裂缝发展及破坏模式
Table 3 Crack development and failure modes of UHPC rectangular beams
Beams Vu/kN Wu/mm N θ/(∘) Failure mode B-λ-1 562 Broken 24 39 Diagonal tension B-λ-1.5 606 5.4 17 40 Shear compression B0 618 3.5 14 41 Shear compression B-λ-2.5 644 0.6 12 39 Flexure B-S-T 611 2.5 18 41 Shear-Flexure B-S-H 655 1.4 14 40 Shear-Flexure B-L-6 603 0.8 20 41 Shear-Flexure B-L-13 620 1.3 16 40 Shear-Flexure Notes: Vuis the ultimate shear capacity; Wuis the width of the main crack at Vu; N is the number of diagonal cracks with a width exceeding 10 cm at Vu; θis the inclination angle of the main diagonal crack. 表 4 塑性损伤模型(CDP)模型关键参数
Table 4 Key parameters of concrete damage plasticity (CDP) model
Dilation
angle/(°)Eccentricity fb0/fc0 K Viscosity
parameter30 0.1 1.16 0.667 0.0003 Notes: fb0/fc0 is ratio of biaxial compressive strength to uni axial compressive strength. K is yield surface shape factor for stress state adjustments. 表 5 UHPC矩形梁抗剪承载力计算模型
Table 5 Predictive model of shear capacity of UHPC rectangular beams
Standards Predictive formulas NF P18-710[19] Vu=Vc+Vs+Vf
Vc=0.24kf1/2cbz,
k=1+3σcp/fck,
Vf=σfbz;σf=1εmax−εel∫εmaxεelσf(ε)dε,
Vs=Avzfycotθ/s, z=0.9dDAfStb[20] Vu=Vc+Vs+Vf
Vc=0.15(1+√200/d)(100⋅As/(b⋅d)fc) 1/3+ 0.12⋅σcp
Vf=0.7ftbh
Vs=Avzfycotθ/sFHWA-HRT-23[21] Vu=Vc+Vs
VC=ftbdcotθ; Vs=Avdfycotθ/sNotes: Vc, Vs and Vf are the shear contributions of concrete, reinforcement, and fibers, respectively. k is the prestress enhancement coefficient. fc is the standard compressive strength. z is the internal lever arm. σcp is the axial stress induced by prestress. εmax and εel are the maximum uniaxial tensile strain and elastic strain. θ is the angle between the principal compressive stress and the axis, iteratively calculated based on ρs, ρv, and the tensile strain-hardening behavior described in FHWA-HRT-23. 表 6 UHPC矩形梁抗剪承载力计算结果比较
Table 6 Predictive model of shear capacity of UHPC rectangular beams
Beams Test NF P18-710 DAfStb FHWA-HRT-23 LBM Vexp σf Vcal δ σf Vcal δ θ Vcal δ σf Vcal δ B-λ-1 562 6.9 492 −1.3% 6.3 555 −12.5% 41.5 516 −8.1% 6.9 594 5.7% B-λ-1.5 606 7.2 503 −6.5% 6.5 567 −17.0% 40.2 557 −8.0% 7.2 601 −0.8% B0 618 9.1 593 −6.3% 6.7 579 −4.1% 38.3 615 −0.5% 9.1 632 2.2% B-λ-2.5 644 9.3 602 −8.2% 7.0 591 −6.5% 38.3 633 −1.8% 9.3 637 −1.1% B-S-T 611 7.4 515 −11.8% 6.0 539 −15.7% 38.3 554 −9.3% 7.4 609 −0.4% B-S-H 655 9.9 626 −7.1% 7.3 609 −4.4% 38.3 657 0.3% 9.9 650 −0.7% B-L-6 603 9.5 609 −2.4% 6.9 589 1.0% 40.2 586 −2.8% 9.5 639 6.0% B-L-13 620 8.0 543 −10.4% 6.3 555 −12.4% 38.3 578 −6.8% 8.0 619 −0.1% Average −6.7% −8.9% −4.6% 1.3% Notes: Vexp is the experimental shear capacity; Vcal is the calculated shear capacity; δ is the relative difference of Vcal with respect to Vexp. -
[1] 王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型[J]. 复合材料学报, 2024, 41(1): 383-394. WANG Q, LIANG L, SHI Q. Mechanical behavior and constitutive model of ultra-high performance concrete with hybrid steel fibers under axial tension[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383-394(in Chinese).
[2] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5): 1295-1305. GUAN P, TU Y, ZHANG P, et al. Study on the uniaxial tensile and compressive constitutive relationships of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1295-1305(in Chinese).
[3] XU Q, ZHU Y, SEBASTIAN W, et al. Effect of Steel Fiber Shear Reinforcement on Post-cracking Shear Fatigue Behavior of Non-stirrup UHPC Beams[J]. Journal of Structural Engineering, 2024, 150(4): 04024014. DOI: 10.1061/JSENDH.STENG-12112
[4] El-HELOU R G, GRAYBEAL B A. Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams[J]. Journal of Structural Engineering, 2023, 149(2): 04022234. DOI: 10.1061/JSENDH.STENG-11065
[5] SAQIF M A, TAI Y S, El-TAWIL S. Experimental and Computational Evaluation of the Ductility of UHPC Beams with Low Steel-Reinforcement Ratios[J]. Journal of Structural Engineering, 2022, 148(7): 04022077. DOI: 10.1061/(ASCE)ST.1943-541X.0003378
[6] MÉSZÖLY T, RANDL N. Shear behavior of fiber-reinforced ultra-high performance concrete beams[J]. Engineering Structures, 2018, 168: 119-127. DOI: 10.1016/j.engstruct.2018.04.075
[7] 何志勇, 阳洁颖, 邹丽梅. 双卧轴振动搅拌对超高性能混凝土性能的影响研究[J]. 长沙理工大学学报(自然科学版), 2023, 20(5): 154-162. HE Z, YANG J, ZOU L. Research on the effect of the double-horizontal-shaft vibrating mixing on the performance of ultra-high performance concrete[J]. Journal of Changsha University of Science and Technology (Natural Science), 2023, 20(5): 154-162(in Chinese).
[8] 李传习, 聂洁, 冯峥, 等. 振动搅拌对超高性能混凝土施工及力学性能影响[J]. 硅酸盐通报, 2019, 38(8): 2586-2594. LI C, NIE J, FENG Z, et al. Effect of Vibratory Mixing on the Construction and Mechanical Properties of Ultra-High Performance Concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2586-2594(in Chinese).
[9] 雒敏, 蔺鹏臻, 杨子江, 等. 钢筋超高性能混凝土梁抗剪承载力及力学性能分析[J]. 桥梁建设, 2021, 51(6): 53-60. LUO M, LIN P, YANG Z, et al. Analysis of Shear Capacity and Mechanical Performance of R-UHPC Beam[J]. Bridge Construction, 2021, 51(6): 53-60(in Chinese).
[10] CHEN B, ZHOU J, ZHANG D, et al. Experimental study on shear performances of ultra-high performance concrete deep beams[J]. Structures, 2022, 39: 310-322. DOI: 10.1016/j.istruc.2022.03.019
[11] YAVAŞ A, HASGUL U, TURKER K, et al. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams[J]. Advances in Structural Engineering, 2019, 22(7): 1591-1605. DOI: 10.1177/1369433218820788
[12] HASGUL U, YAVAS A, BIROL T, et al. Steel Fiber Use as Shear Reinforcement on I-Shaped UHP-FRC Beams[J]. Applied Sciences, 2019, 9(24): 5526. DOI: 10.3390/app9245526
[13] CAI Z, DUAN X, LIU L, et al. Reinforced ultra-high performance concrete beam under flexure and shear: Experiment and theoretical model[J]. Case Studies in Construction Materials, 2024, 20: e02647. DOI: 10.1016/j.cscm.2023.e02647
[14] MARTÍNEZ-DE-LA-CONCHA A, RÍOS J D, CIFUENTES H. Numerical Study of the Shear Behavior of Ultra-High-Performance Concrete Beams[J]. Hormigón y Acero, 2024, 75(302-303): 157-162.
[15] ZHANG Y, XIN H, CORREIA J A F O. Fracture evaluation of ultra-high-performance fiber reinforced concrete (UHPFRC)[J]. Engineering Failure Analysis, 2021, 120: 105076. DOI: 10.1016/j.engfailanal.2020.105076
[16] MA K, MA Y, LIU B. Experimental investigation on ultra-high performance fiber reinforced concrete beams[J]. Mechanics of Advanced Materials and Structures, 2023, 30(6): 1155-1171. DOI: 10.1080/15376494.2022.2028947
[17] YANG J, DOH J, YAN K, et al. Experimental investigation and prediction of shear capacity for UHPC beams[J]. Case Studies in Construction Materials, 2022, 16: e01097. DOI: 10.1016/j.cscm.2022.e01097
[18] El-HELOU R G, GRAYBEAL B A. Shear Behavior of Ultrahigh-Performance Concrete Pretensioned Bridge Girders[J]. Journal of Structural Engineering, 2022, 148(4): 04022017. DOI: 10.1061/(ASCE)ST.1943-541X.0003279
[19] French Standardization Association. NF P18-710: Ultra-High Performance Fibre-Reinforced Concrete – Definition, Specifications, and Compliance Standard[S]. Paris: French Standardization Association, 2016.
[20] German Committee for Reinforced Concrete. DafStb Guidelines: Application Handbook for Ultra-High Performance Fibre-Reinforced Concrete (UHPC)[S]. Berlin: German Committee for Reinforced Concrete, 2012.
[21] Federal Highway Administration. FHWA-HRT-23-077: Ultra-High Performance Concrete (UHPC): Material Properties and Design Guide[S]. Washington, D. C. : U. S. Federal Highway Administration, 2023.
[22] 邱明红, 晏班夫, 李钊, 等. 基于试验数据库的UHPC梁抗剪承载力计算方法[J]. 中南大学学报(自然科学版), 2024, 55(9): 3441-3456. QIU M, YAN B, LI Z, et al. Calculation method of shear capacity of UHPC beams based on experimental database[J]. Journal of Central South University (Science and Technology), 2024, 55(9): 3441-3456(in Chinese).
[23] FOSTER S J, BENTZ E. Design of UHPC prestressed girders for shear[J]. Structural Concrete, 2024, 25(2): 780-795. DOI: 10.1002/suco.202300738
[24] 姜海波, 冯家辉, 肖杰, 等. 体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索[J]. 复合材料学报, 2022, 39(2): 707-717. JIANG H, FENG J, XIAO J, et al. Experimental study on shear performance of externally prestressed UHPC beams without stirrups[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 707-717(in Chinese).
[25] SUN B, LUO R, QUAN C, et al. Shear behavior of prestressed UHPC rectangular beams: experimental investigation and limit equilibrium state-based prediction method[J]. Archives of Civil and Mechanical Engineering, 2024, 24(1): 31.
[26] SUN B, LUO R, XIAO R, et al. Study on flexural and shear performance of ultra-high performance concrete prefabricated pi-beams[J]. Structural Concrete, 2023, 24(6): 7116-7134. DOI: 10.1002/suco.202200858
[27] GB/T 50080-2016. 普通混凝土拌合物性能试验方法标准[S]. 北京: 中国标准出版社, 2016. GB/T 50080-2016. Standard for test method of performance on ordinary fresh concrete[S]. Beijing: China Standard Press, 2016. (in Chinese).
[28] 张田, 侯正猛, 张盛友, 等. 基于新的弹塑性损伤模型分析不同强度混凝土裂缝贯通与损伤演化的内在规律[J]. 工程科学与技术, 2024. ZHANG T, HOU Z, ZHANG S, et al. Exploring Inherent Patterns between Crack Coalescence and Damage Evolution of Concrete with Different Strengths Using a New Elastoplastic Damage Model[J]. Advanced Engineering Sciences, 2024. (in Chinese).
-
目的
超高性能混凝土(Ultra-High Performance Concrete, UHPC)因其优异的力学性能和耐久性,在桥梁等基础设施中得到了广泛应用。抗剪性能是UHPC梁设计中的关键控制因素,掺入钢纤维能显著增强其抗剪能力,但增强机理和量化模型仍不完善。本文旨在系统探讨钢纤维掺量、形状及尺寸对预应力UHPC矩形梁抗剪性能的影响,揭示其抗剪机理,并通过试验研究、数值模拟和理论分析为UHPC梁的设计提供科学依据。
方法设计并开展了8根长3.1 m、高0.35 m的UHPC矩形梁抗剪试验。试验以钢纤维体积掺量(1%、1.5%、2%、2.5%)、形状(平直型、扭曲型、弯钩型)和尺寸(14 mm/0.22 mm、6 mm/0.12 mm、13 mm/0.32 mm)为变量,采用四点加载法,重点分析荷载-挠度关系、裂缝扩展规律及破坏模式。基于混凝土塑性损伤模型(Concrete Damage Plasticity, CDP)开展数值模拟,进一步探讨不同设计参数下抗剪承载力对钢纤维掺量的敏感性。理论分析方面,基于极限平衡法分析抗剪机理构建UHPC梁抗剪承载力预测模型,并与法国NF P18-710、德国DAfStb及美国FHWA-HRT-23规范方法进行对比验证。
结果试验结果表明,UHPC梁的抗剪过程可分为弹性阶段、带裂缝工作阶段和极限状态阶段。钢纤维通过剪跨区裂缝的桥接作用改善剪压区的应力分布,延缓主裂缝扩展和失稳过程,从而显著提升抗剪能力和延性。掺量从1%提高至2.5%时,抗剪承载力平均提升10.7%;弯钩型钢纤维表现出显著的增韧效果,使延性提升41.7%,并在限制裂缝宽度和数量方面效果最佳。掺量和形状对梁体破坏模式的转变有重要影响。在掺量较小(1%)时,梁体表现出脆性的斜拉破坏;而在较高掺量和复杂纤维形状作用下,梁体逐渐表现出延性的剪压破坏或弯剪破坏,当掺量达到2.5%时表现出弯曲破坏。采用塑性损伤模型的数值模拟能较好地再现试验梁的荷载-挠度曲线和破坏模式,抗剪承载力的平均误差为3%,但对极限状态下变形的预测略低于试验值(误差为-7.7%)。参数分析发现,钢纤维对抗剪性能的增强效果随剪跨比的减小而减弱;在剪跨比为1的条件下,纤维掺量从1%增至2.5%时,抗剪承载力仅提升2.6%。钢纤维与受拉钢筋及箍筋之间存在显著的协同作用,在较高箍筋率条件下,钢纤维的增效作用相对减弱;而纵向受拉钢筋率及预应力的变化对抗剪性能影响较小。理论分析表明,UHPC梁的抗剪承载力由未开裂区域混凝土的压力、钢纤维的拉应力和箍筋等部分共同组成,现有设计标准均考虑了上述贡献。法国和德国规范单独考虑了钢纤维桥接应力的数值,但将其计入抗剪贡献时采用了简化变角桁架模型导致了偏于保守的结果(平均误差分别为-8.9%和-6.7%)。美国FHWA-HRT-23规范基于改进压力场理论推导,计算值与试验结果更为接近(平均误差为-4.6%),但在低掺量条件下略显不足。极限平衡法预测精度最好,平均误差控制仅1.3%。
结论系统揭示了钢纤维掺量、形状及尺寸对预应力UHPC矩形梁抗剪性能的影响规律,明确了钢纤维通过桥接裂缝和优化剪压区应力分布显著提升梁体抗剪承载力和延性的作用机理。研究表明,高掺量(≥2%)和复杂形状(弯钩型或长径比大的钢纤维)对抗剪承载力和延性的提升最为显著;钢纤维对剪跨比较大或箍筋率较低梁体的增效作用尤为突出。此外,提出的极限平衡法在预测UHPC梁抗剪承载力时表现出较高的精度,优于现行国际规范。
-
超高性能混凝土(UHPC)是一种具有卓越性能的纤维增强水泥基材料,已在桥梁等基础设施中得到了广泛应用。然而,钢纤维在提升UHPC梁抗剪性能方面的具体作用机理和量化模型仍不够完善,现有设计方法在预测精度上存在提升空间。
本文通过抗剪试验和数值模拟系统分析了钢纤维掺量、尺寸及形状复杂度对梁抗剪能力的影响。研究结果显示,钢纤维通过桥接裂缝及优化剪压区的应力分布,显著提高了梁的抗剪强度和延性,并改善了破坏模式。将钢纤维掺量从1%提高至2.5%可使抗剪承载力增加10.7%,该效果在较大剪跨比和低配箍率条件下尤为显著。通过对多种抗剪承载力预测方法的比较,美国规范精度优于法国和德国规范,提出的极限平衡法在预测中的误差控制在6%以内,表现出较高的适用性。
试验梁裂缝分布和破坏模式
不同(a)剪跨比和(b)配箍率下钢纤维掺量对抗剪承载力的影响