纳米羟基磷灰石的微观形貌对木材表面超疏水层性能及稳定性的影响

Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood

  • 摘要: 对木材表面进行超疏水改性是降低木材干缩湿胀,延长木制品使用寿命的一种有效手段,但木材表面超疏水改性的实际应用受限于涂层较差的稳定性。木材表面超疏水层中无机纳米粒子的微观形貌是影响其稳定性的重要因素,然而鲜有文章对此进行系统探讨。本文以纳米球、纳米棒及纳米线三种形貌的羟基磷灰石为原料,通过与聚二甲基硅氧烷复合并喷涂到木材表面的方法对木材表面进行超疏水改性,通过砂纸磨损、胶带剥离及化学腐蚀等破坏涂层的方法来探究羟基磷灰石的形貌对木材表面超疏水层稳定性的影响规律。结果表明,由于羟基磷灰石纳米球有着更小的长径比及尺寸,可更有效地进入到木材的细胞壁及细胞腔中,因而由羟基磷灰石纳米球制备而成的木材超疏水层具有更优异的疏水性及稳定性,在砂纸磨损和胶带剥离循环15次后,仍能保持超疏水性。这些研究结果可为高性能且长效稳定木材超疏水涂层的研制提供理论基础。

     

    Abstract: Superhydrophobic modification of wood surfaces can effectively limit the shrinkage and swelling of wood, thereby extending the service life of wood products. However, the practical application of superhydrophobic modification of wood surfaces is limited due to the poor stability of the superhydrophobic coating. The stability of the superhydrophobic coating is affected by the microscopic morphology of inorganic nanoparticles in the wood superhydrophobic layer. However, few research has systematically discussed this issue. In this paper, three types of hydroxyapatite nanomaterials (nanospheres, nanorods and nanowires), were used as raw materials for the superhydrophobic modification of wood surfaces by compounding with polydimethylsiloxane and spraying onto the wood surface. The effect of hydroxyapatite morphology on the stability of the superhydrophobic layer on wood was investigated through sandpaper wear, tape stripping, and chemical corrosion tests. The results demonstrate that hydroxyapatite nanospheres with smaller aspect ratios and sizes can efficiently penetrate the cellular walls and cavities of wood. As a result, the superhydrophobic layer prepared from these nanospheres exhibit better hydrophobicity and stability, and the obtained coatings can maintain superhydrophobicity after 15 cycles of sandpaper wearing and tape peeling. These findings provide a theoretical foundation for the development of high-performance and stable wood superhydrophobic coatings.

     

/

返回文章
返回