改性玄武岩纤维对混凝土抗硫酸盐性能的影响

Effect of modified basalt fiber on the sulfate resistance of concrete

  • 摘要: 为探究玄武岩纤维(BF)表面改性对混凝土抗硫酸盐性能的影响。本文利用γ-氨丙基三乙氧基硅烷偶联剂(KH550)和纳米二氧化硅(nano-SiO2)对BF表面进行改性。通过微观表征技术和混凝土硫酸盐侵蚀试验揭示改性机制并对在硫酸盐侵蚀环境下的耐久性进行评估。结果表明:KH550使nano-SiO2分布均匀,有利于BF表面附着的nano-SiO2与水泥中的Ca(OH)2反应,促进水泥的水化反应,增强了BF与水泥基体的界面黏结性。在硫酸盐侵蚀的条件下,与其他种类混凝土相比,加入了纳米改性纤维的混凝土表现出最佳的抗盐和抗压性能。在侵蚀280 d后,混凝土的质量和抗压强度仅损失了0.23%和2.76%。硫酸盐-干湿循环对混凝土试件的侵蚀过程可大致分为促进混凝土密实、开始损坏混凝土和剧烈损坏混凝土三个阶段。Nano-SiO2充填了混凝土中纤维与基体界面区的微缝隙,发生的二次水化反应可生成密实且耐久的C-S-H凝胶,可有效抑制化学物质与水分进一步对混凝土的渗透,阻碍更多AFt与石膏等膨胀类物质的产生,显著提高混凝土的抗盐侵蚀能力。

     

    Abstract: To explore the effect of surface modification of basalt fibers (BF) on the sulfate resistance of concrete,γ-aminopropyltriethoxysilane coupling agent (KH550) and nano-silica (nano-SiO2) were used to modify the surface of basalt fibers (BF). The modification mechanisms were revealed through micro-characterization techniques and concrete sulfate erosion tests, and the durability in a sulfate erosion environment was assessed. The results show: KH550 can facilitate the uniform distribution of nano-SiO2, which aids in the reaction between nano-SiO2 adhered to the BF surface and Ca(OH)2 in cement, enhancing the hydration of cement and the interfacial adhesion between BF and the cement matrix. Under sulfate attack conditions, concrete that incorporates nano-modified fibers outperforms other types of concrete in terms of salt resistance and compressive strength. After 280 days of erosion, there is merely a 0.23% reduction in the mass of the concrete and a 2.76% decline in its compressive strength. The erosion process of concrete specimens under sulfate dry-wet cycling can generally be divided into three phases: enhancing the compaction of concrete, starting concrete deterioration, and severe degradation of concrete. Nano-SiO2 fills the micro-cracks at the interface between fibers and the matrix in concrete, leading to secondary hydration reactions that produce dense and durable C-S-H gel. This effectively inhibits the further penetration of chemicals and moisture into the concrete, impedes the production of expansive materials such as AFt and gypsum, significantly improving the concrete’s resistance to salt-induced erosion.

     

/

返回文章
返回