纳米氧化钼杂化氢氧化镁及其对软质PVC阻燃抑烟性能的影响

刘晓媛, 鲍鑫伊, 刘文慧, 郑勇奎, 李雪, 吕智慧, 党力

刘晓媛, 鲍鑫伊, 刘文慧, 等. 纳米氧化钼杂化氢氧化镁及其对软质PVC阻燃抑烟性能的影响[J]. 复合材料学报, 2024, 43(0): 1-15.
引用本文: 刘晓媛, 鲍鑫伊, 刘文慧, 等. 纳米氧化钼杂化氢氧化镁及其对软质PVC阻燃抑烟性能的影响[J]. 复合材料学报, 2024, 43(0): 1-15.
LIU Xiaoyuan, BAO Xinyi, LIU Wenhui, et al. Nano-sized molybdenum trioxide doped magnesium hydroxide and its effect on flame retardancy and smoke suppression of flexible polyvinyl chloride[J]. Acta Materiae Compositae Sinica.
Citation: LIU Xiaoyuan, BAO Xinyi, LIU Wenhui, et al. Nano-sized molybdenum trioxide doped magnesium hydroxide and its effect on flame retardancy and smoke suppression of flexible polyvinyl chloride[J]. Acta Materiae Compositae Sinica.

纳米氧化钼杂化氢氧化镁及其对软质PVC阻燃抑烟性能的影响

基金项目: 国家自然科学基金(22165024);青海省自然科学基金(2021-ZJ-935Q)
详细信息
    通讯作者:

    党 力,博士,副教授,硕士生导师,研究方向为聚合物复合材料的结构设计与性能优化, E-mail: danglix@163.com

  • 中图分类号: TB332

Nano-sized molybdenum trioxide doped magnesium hydroxide and its effect on flame retardancy and smoke suppression of flexible polyvinyl chloride

Funds: National Natural Science Foundation of China (No. 22165024); Natural Science Foundation of Qinghai Province, China (No. 2021-ZJ-935Q)
  • 摘要: 为解决氢氧化镁(MH)阻燃效率低、抑烟效果差等问题,采用一步水热法制备出纳米氧化钼杂化氢氧化镁(MO@MH),利用纳米氧化钼的Lewis酸催化交联作用提高MH的阻燃抑烟效率。XRD、SEM、TEM及元素分布结果表明,MoO3以小于10 nm的颗粒形式沉积在厚度10~20 nm的氢氧化镁(MH)片层中,并进一步堆积形成尺寸20~30 μm的花球状结构。阻燃性能测试结果表明,MO@MH阻燃抑烟fPVC的效率明显优于MH,MO@MH-1/fPVC复合材料的峰值热释放速率和峰值产烟率值相较于MH/fPVC复合材料分别降低了33.64%和75.16%;MO@MH/fPVC复合材料的阻燃级别达到V0级。残炭分析结果表明,MO@MH的加入使fPVC基体生成以MgO和MgMoO4为主的外层残炭,以及以石墨化碳、MgO和MgMo2O7为主的内层残炭,相较于MH/fPVC复合材料残炭的质量、致密度、完整性等方面均明显提高。+6价Mo元素通过氧化还原反应参与fPVC基体成炭过程,生成+4价Mo化合物。力学性能测试结果表明,MO@MH对fPVC基体的增韧效果优于MH,MO@MH-1/fPVC复合材料的冲击强度相较于MH/fPVC复合材料提高了32.34%,主要是因为MO@MH与fPVC基体较差的界面相容性以及复杂结构所导致的界面缺陷的存在。

     

    Abstract: In order to solve the problem of low flame retarding efficiency and poor smoke suppression effect of magnesium hydroxide (MH), nano-sized molybdenum oxide doped magnesium hydroxide (MO@MH) was prepared by one-step hydrothermal method. The flame retarding and smoke suppression efficiency of MH was improved by the Lewis acid catalytic cross-linking effect of nano-sized molybdenum oxide. XRD, SEM, TEM and element distribution results showed that MoO3 was deposited in magnesium hydroxide (MH) layers with thickness of 10~20 nm in the form of particles less than 10 nm. The MH layers were further stacked to form flower spheres with size of 20~30 μm. The results of flame-retardant tests showed that the flame retardant and smoke suppression efficiency of MO@MH fPVC was obviously better than that of MH. The peak heat release rate and peak smoke production rate of MO@MH-1/fPVC composite were 33.64% and 75.16% lower than those of MH/fPVC composite, respectively. MO@MH/fPVC composites also passed V0 rate in the vertical tests. The results of char residue analysis showed that the addition of MO@MH can produce the outer char residue mainly composed of MgO and MgMoO4, and the inner char residue mainly composed of graphitized carbon, MgO and MgMo2O7. The quality, density and integrity of the char residue of MO@MH/fPVC composites were significantly improved compared with that of MH/fPVC composite. The + 6 Mo element participated in the charring process of fPVC matrix through oxidation-reduction reactions to form +4 Mo compounds. The mechanical properties test results showed that MO@MH had better toughening effect on fPVC matrix than MH, and the impact strength of MO@MH-1/fPVC composite was increased by 32.34% compared with the MH/fPVC composite. The main reason was the poor interface compatibility between MO@MH and fPVC matrix and the existence of interface defects caused by complex structure.

     

  • 图  1   纳米氧化钼杂化氢氧化镁(MO@MH)的XRD谱图

    Figure  1.   XRD patterns of nano-sized molybdenum oxide doped magnesium hydroxide (MO@MH)

    图  2   MO@MH的SEM照片

    Figure  2.   SEM images of MO@MH

    图  3   MO@MH的元素分布图

    Figure  3.   Elemental mappings of MO@MH

    图  4   MO@MH-1的TEM照片及元素分布图

    Figure  4.   TEM images and elemental mapping of MO@MH-1

    图  5   MH/fPVC和MO@MH/fPVC复合材料锥形量热测试结果:(a)热释放速率;(b)总放热量;(c)产烟率;(d)总产烟量;(e) CO产率;(f) CO2产率

    Figure  5.   CCT results of MH/fPVC and MO@MH/fPVC composites: (a) Heat release rate; (b) Total heat release; (c) Smoke production rate; (d) Total smoke production; (e) CO production; (f) CO2 production

    图  6   MH/fPVC和MO@MH/fPVC复合材料垂直燃烧照片

    Figure  6.   Pictures of vertical burning tests of MH/fPVC and MO@MH/fPVC composites

    图  7   MH/fPVC和MO@MH/fPVC复合材料的燃烧残炭照片

    Figure  7.   Photographs of char residues of MH/fPVC and MO@MH/fPVC composites

    图  8   MH/fPVC和MO@MH/fPVC复合材料的外层残炭SEM照片及元素分布图

    Figure  8.   SEM images and elemental mapping of the outer layer of char residues of MH/fPVC and MO@MH/fPVC composites

    图  9   MH/fPVC和MO@MH/fPVC复合材料的内层残炭SEM照片及元素分布图

    Figure  9.   SEM images and elemental mapping of the inner layer of char residues of MH/fPVC and MO@MH/fPVC composites

    图  10   MH/fPVC和MO@MH/fPVC复合材料的燃烧残炭XRD谱图:(a)外层残炭;(b)内层残炭

    Figure  10.   XRD patterns of the char residues of MH/fPVC and MO@MH/fPVC composites: (a) Outer layer; (b) Inner layer

    图  11   MH/fPVC和MO@MH/fPVC复合材料的内层残炭Raman光谱图

    Figure  11.   Raman spectrum of the inner layer of the char residues of MH/fPVC and MO@MH/fPVC composites

    图  12   MH/fPVC和MO@MH/fPVC复合材料的内层残炭XPS谱图

    Figure  12.   XPS spectrum of the inner layer of the char residues of MH/fPVC and MO@MH/fPVC composites

    图  13   MH/fPVC和MO@MH/fPVC复合材料的力学性能:(a)拉伸应力-应变曲线;(b)冲击强度

    Figure  13.   Mechanical properties of MH/fPVC and MO@MH/fPVC composites: (a) Tensile stress-strain curves; (b) Impact strength

    表  1   MO@MH材料的元素组成

    Table  1   Elemental composition of MO@MH

    Element MO@MH-5 MO@MH-2 MO@MH-1
    Wt.% At.% Wt.% At.% Wt.% At.%
    O 46.49 67.82 41.39 68.99 39.91 70.31
    Mg 26.28 25.56 17.68 19.64 13.69 16.07
    Mo 27.23 6.62 40.93 11.37 46.40 13.62
    Notes: Wt.% is the weight percent; At.% is the atomic percent.
    下载: 导出CSV

    表  2   MH/fPVC和MO@MH/fPVC复合材料LOI及锥形量热相关参数

    Table  2   Parameters of the LOI and CCT result of the MH/fPVC and MO@MH/fPVC composites

    Sample LOI/% pHRR/kW·m−2 THR/MJ·m−2 pSPR/m2·s−1 TSP/m2 pCO/% pCO2/% Residue/wt.%
    MH/fPVC 29.7 210.83 48.42 0.0942 11.07 0.048 0.414 35.34
    MO@MH-5/fPVC 34.0 167.23 42.80 0.0408 8.60 0.026 0.343 45.72
    MO@MH-2/fPVC 34.5 186.96 42.67 0.0474 7.62 0.034 0.394 43.32
    MO@MH-1/fPVC 31.0 139.91 39.31 0.0234 4.93 0.025 0.297 46.21
    Notes: pHRR is the peak of the heat release rate; THR is the total heat release; pSPR is the peak of the smoke production rate; TSP is the total smoke production; pCO and pCO2 are the peak of the CO and CO2 production.
    下载: 导出CSV

    表  3   MH/fPVC和MO@MH/fPVC复合材料力学性能

    Table  3   Mechanical properties of the MH/fPVC and MO@MH/fPVC composites

    SampleTensile strength/MPaTensile modulus of elasticity/MPaNominal strains at break/%Impact strength/(kJ·m−2)
    MH/fPVC16.32±0.327.82±0.12193.38±10.2853.99±2.43
    MO@MH-5/fPVC14.62±0.849.65±0.64164.97±13.0159.14±5.25
    MO@MH-2/fPVC13.97±0.588.97±0.46129.08±10.6164.48±6.45
    MO@MH-1/fPVC12.77±1.429.62±0.38119.58±16.3171.45±1.43
    下载: 导出CSV
  • [1]

    BALDUCCI G, DIAZ L B, GREGORY D H. Recent progress in the synthesis of nanostructured magnesium hydroxide[J]. CrystEngComm, 2017, 19: 6067-6084. DOI: 10.1039/C7CE01570D

    [2] 彭筱婷. 片状纳米氢氧化镁基抑烟/成炭剂的制备及应用研究 [D]. 大连: 大连理工大学, 2022.

    PENG Xiaoting. Preparation and application of lamellar nano magnesium hydroxide as smoke suppressor/carbon forming agent [D]. Dalian: Dalian University of Technology, 2022(in Chinese)

    [3]

    LIU Jichun, HE Yunpeng, CHANG Haibo, et al, Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube[J]. Polymer Degradation and Stability, 2020, 171: 10905.

    [4]

    HASNAT M R, HASSAN M K, SAHA S. Flame retardant polymer composite and recent inclusion of magnesium hydroxide filler material: A bibliometric analysis towards further study scope[J]. Fire, 2023, 6(5): 180. DOI: 10.3390/fire6050180

    [5] 杨 光. 氢氧化镁分解特性的研究 [D]. 沈阳: 东北大学, 2009.

    YANG Guang. Study on the decomposition behavior of magnesium hydrate [D]. Shenyang: Northeastern University, 2009(in Chinese)

    [6] 杜佳恒, 范鑫丽, 肖东琴, 等. 钛表面电化学沉积氢氧化镁与氧化镁涂层的抗菌性能与生物活性[J]. 硅酸盐学报, 2024, 52(5): 1570-1577.

    DU Jiaheng, FAN Xinli, XIAO Dongqin, et al. Antibacterial properties and biological activities of magnesium hydroxide and magnesium oxide coatings by electrochemical deposition on titanium surface[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1570-1577(in Chinese)

    [7] 龚 露. 氢氧化镁晶须的制备及其对PO43−和Pb2+的吸附性能研究 [D]. 重庆: 重庆科技大学, 2023.

    GONG Lu. Preparation of magnesium hydroxide whiskerand its adsorption properties for PO43− and Pb2+ [D]. Chongqing: Chongqing University of Science and Technology, 2023(in Chinese)

    [8] 刘富舟. 水氯镁石喷雾热解制备氧化镁工艺设计及实验研究 [D]. 上海: 华东理工大学, 2015.

    LIU Fuzhou. Process design and experimental study on preparation of magnesium oxide from bischofite by spray pyrolysis [D]. Shanghai: East China University of Science and Technology, 2015(in Chinese)

    [9] 兰生杰. 氢氧化镁表面改性机理及其在EVA中的应用研究 [D]. 西宁: 中国科学院青海盐湖研究所, 2017.

    LAN Shengjie. Surface modification mechanism of magnesium hydroxide and its application in EVA [D]. Xining: Qinghai Institution of Salt Lakes, Chinese Academy of Sciences, 2017(in Chinese)

    [10]

    DANG Li, NAI Xueying, DONG Yaping, et al. Functional group effect on flame retardancy, thermal, and mechanical properties of organophosphorus-based magnesium oxysulfate whiskers as a flame retardant in polypropylene, RSC Advances, 2017, 7, 21655-21665.

    [11]

    LIU Jichun, GUO Yingbin, CHANG Haibo, et al. Interaction between magnesium hydroxide and microencapsulated red phosphorus in flame-retarded high-impact polystyrene composite[J]. Fire and Materials, 2018, 42(8): 958-96. DOI: 10.1002/fam.2650

    [12]

    ZHANG Zhifang, WU Weihong, ZHANG Mengjiao et al. Hydrothermal synthesis of 4ZnO·B2O3·H2O/RGO hybrid material and its flame retardant behavior in flexible PVC and magnesium hydroxide composites, Applied Surface Science, 2017, 425: 896-904.

    [13]

    DANG Li, LV Zhihui, DU Xinliu et al. Flame retardancy and smoke suppression of molybdenum trioxide doped magnesium hydrate in flexible polyvinyl chloride[J]. Polymers for Advanced Technologies, 2020, 31(9): 2108-2121. DOI: 10.1002/pat.4933

    [14] 党力, 朱东海, 吕智慧, 等. 一种纳米氧化钼杂化氢氧化镁阻燃剂的制备方法 [P], 中国专利, ZL 201910245402.0, 2021-05-04.

    DANG Li, ZHU Donghai, LV Zhihui, et al. A preparation method of the nano-sized molybdenum oxide hybrid magnesium hydroxide flame retardant [P]. Chinese patent, ZL 201910245402.0, 2021-05-04(in Chinese)

    [15] 中国国家标准化管理委员会. 建筑材料热释放速率试验方法: GB/T 16172-2007 [S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Test method for heat release rate of building materials: GB/T 16172-2007 [S]. Beijing: China Standards Press, 2007(in Chinese).

    [16] 中国国家标准化管理委员会. 用氧指数法测定燃烧行为: GB/T 2406-2009 [S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastic-Determination of burning behavior by oxygen index: GB/T 2406-2009 [S]. Beijing: China Standards Press, 2009(in Chinese).

    [17] 中国国家标准化管理委员会. 塑料 燃烧性能的测试 水平法和垂直法: GB/T 2408-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastic-Determination of burning characteristics-Horizontal and vertical test: GB/T GB/T 2408-2008 [S]. Beijing: China Standards Press, 2008(in Chinese).

    [18] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040-2006 [S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastic-Determination of tensile properties: GB/T 1040-2006 [S]. Beijing: China Standards Press, 2006(in Chinese).

    [19] 中国国家标准化管理委员会. 塑料 简支梁冲击性能的测试: GB/T 1043-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastic-Determination of charpy impact properties: GB/T 16172-2007 [S]. Beijing: China Standards Press, 2008(in Chinese).

    [20]

    HAN Xiaoli, WU Ping, WANG Li, et al. Self-assembled micro-nano flower-like/spherical magnesium hydroxide for heat-energy storage[J]. Materials Letters, 2023, 334: 133723. DOI: 10.1016/j.matlet.2022.133723

    [21] 王增豪, 马益恒, 娄元猛, 等. 羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能[J]. 复合材料学报, 2023, 40(5): 2699-2708.

    WANG Zenghao, MA Yiheng, LOU Yuanmeng, et al. Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nanoflame retardant and its flame retardant properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2699-2708.

    [22]

    MENG Weihua, DONG Yanli, LI Jiahe, et al. Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC[J]. Composites Part B: Engineering, 2020, 188: 107854. DOI: 10.1016/j.compositesb.2020.107854

    [23]

    ANTONIO R J, LUCIA H I M. Metallic oxides as fire retardants and smoke suppressants in flexible poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 2010, 118(5): 2613-2623. DOI: 10.1002/app.32596

    [24]

    ALSHAMMARI A H, ALSHAMMARI M, IBRAHIM M, et al. Processing polymer film nanocomposites of polyvinyl chloride-Polyvinylpyrrolidone and MoO3 for optoelectronic applications[J]. Optics & Laser Technology, 2024, 168: 109833.

    [25] 李宏涛. 功能化氢氧化镁及本征阻燃聚酯的制备及性能 [D]. 兰州: 西北师范大学, 2022.

    LI Hongtao. Preparation and properties of functionalizedmagnesium hydroxide and intrinsic flameretardant polyesters [D]. Lanzhou: Northwest Normal University, 2022(in Chinese)

    [26] 吴 唯, 胡焕波, 沈 辉, 等. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(7): 1-7.

    WU Wei, HU Huanbo, SHEN Hui, et al. Dual-synergistic effect of 4A zeolite and Ca-Mg-Al hydrotalcite on intumescentflame retardant PP and its mechanism[J]. China Plastics, 2022, 36(7): 1-7(in Chinses

    [27]

    LEE S M, LEE S H, ROH J S. Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis[J]. Crystals, 2021, 11(2): 153. DOI: 10.3390/cryst11020153

    [28]

    SHARMA M, RANI S, OATHAK D K, et al. Temperature dependent Raman modes of reduced graphene oxide: Effect of anharmonicity, crystallite size and defects[J]. Carbon, 2021, 184: 437-444. DOI: 10.1016/j.carbon.2021.08.014

    [29]

    CHADHA N, SHARMA R, SAINI P. A new insight into the structural modulation of graphene oxide upon chemical reduction probed by Raman spectroscopy and X-ray diffraction[J]. Carbon Letters, 2021, 31(6): 1125-1131. DOI: 10.1007/s42823-021-00234-5

    [30]

    SEYAMA H, SOMA M. X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80: 237-248.

    [31] 吴 艳. 过渡金属氧化物与有机半导体的界面结构研究 [D]. 昆明: 云南大学, 2021.

    WU Yan. Research on interface structure at transitional metal oxides on organic semiconductors [D]. Kunming: Yunnan University, 2021(in Chinese)

    [32] 张丽珊, 张永伟, 后玉芝, 等. 氧化钼纳米杂化物的可控构筑及催化性能研究[J]. 稀有金属, 2024, 48(4): 498-507.

    ZHANG Lishan, ZHANG Yongwei, HOU Yuzhi, et al. Morphology-controllable preparation and electrocatalytic performance of molybdenum oxide nanohybrids as catalysts for triiodide reduction reaction[J]. Chinese Journal of Rare Metals, 2024, 48(4): 498-507(in Chinese)

  • 期刊类型引用(8)

    1. 徐康康,程蹈,刘点,陈玉霞,涂道伍,郭勇,吴自成. 无损检测技术在纤维增强聚合物复合材料机械损伤监测中的应用进展. 塑料工业. 2024(02): 8-15 . 百度学术
    2. 孟凌霄,石文泽,卢超,黄良,凌建. 碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制. 复合材料学报. 2024(04): 1820-1829 . 本站查看
    3. 熊政辉,陈俊超,肖树坤,荆砚,何喜,陈尧. 应用于斜楔块的子孔径虚拟源全聚焦成像. 应用声学. 2024(03): 625-634 . 百度学术
    4. 曹欢庆,朱启民,赵培含,何梓科,郭师峰. 复杂型面结构超声成像检测研究进展. 仪器仪表学报. 2024(06): 42-53 . 百度学术
    5. 李荣光,朱甜甜,孙伶,陈斯迅,周文彬,周正干. 管道碳纤维复合材料修复层阵列超声检测方法提高检测精度. 石油钻采工艺. 2024(06): 728-742 . 百度学术
    6. 夏玉秀,张义凤,薛峰. 相控阵超声检测技术在航空领域应用研究进展. 无损探伤. 2023(04): 6-10+38 . 百度学术
    7. 杨红娟,杨正岩,杨雷,单一男,林奎旭,武湛君. 碳纤维复合材料损伤的超声检测与成像方法研究进展. 复合材料学报. 2023(08): 4295-4317 . 本站查看
    8. 陈学宽,龙盛蓉,宋奕霖,邹越豪,李志农. 基于二维等效声速的频域全聚焦超声成像研究. 仪器仪表学报. 2023(08): 130-140 . 百度学术

    其他类型引用(5)

  • 目的 

    氢氧化镁(MH)是一种重要的环保型无卤阻燃剂,在聚合物复合材料领域有良好的应用前景。然而,受限于物理作用(分解吸热、水蒸汽稀释、氧化镁阻隔效应等)的阻燃机制,MH的阻燃效率较低、所需添加量大,对复合材料的力学性能及加工流动性能影响较大。为了提高MH阻燃软质PVC(fPVC)的效率、减少其添加量,本文利用纳米氧化钼的Lewis酸催化交联成炭作用与MH形成协同效果,制备出高效阻燃抑烟的纳米氧化钼杂化MH(MO@MH)材料,探究其阻燃机制。

    方法 

    采用一步水热法制备出三种不同配比的MO@MH,将其用作fPVC的阻燃抑烟剂。通过LOI、锥形量热和水平垂直燃烧评价了三种MO@MH对fPVC阻燃抑烟效果的影响;采用SEM、XRD、XPS、Raman等详细分析了复合材料的燃烧残炭,推断MO@MH阻燃fPVC的机制;通过拉伸和冲击性能测试评价MO@MH对fPVC力学性能的影响。

    结果 

    XRD、SEM、TEM及元素分布结果表明,氧化钼以小于10 nm的颗粒形式沉积在厚度10~20 nm的氢氧化镁(MH)片层中,并进一步堆积形成尺寸20~30 μm的花球状结构。阻燃性能测试结果表明,MO@MH对fPVC的阻燃、抑烟效果优于MH,且随着氧化钼含量的增加,阻燃抑烟效果越好。MO@MH-5/fPVC、MO@MH-2/fPVC和MO@MH-1/fPVC复合材料的LOI值分别达到了34.0%、34.5%和31.0%,垂直燃烧级别均达到UL 94的V0级。其中,MO@MH-1/fPVC复合材料的峰值热释放速率、总放热量、峰值产烟率、总产烟量、CO和CO峰值产率相较于MH/fPVC复合材料分别降低了33.64%、18.81%、75.16%、55.47%、47.92%和28.26%。MO@MH-5/fPVC、MO@MH-2/fPVC和MO@MH-1/fPVC复合材料的在燃烧过程中均表现出明显的膨胀效应,残炭量分别为45.72、43.32和46.21 wt%,相较于MH/fPVC复合材料的35.34 wt%有着明显增多,且强度显著增强。SEM结果表明,MO@MH的加入能够有效改善内层残炭的致密性与完整性。EDS和XRD结果表明,MO@MH的加入使fPVC基体生成以MgO和MgMoO为主的外层残炭,以及以石墨化碳、MgO和MgMoO为主的内层残炭。拉曼光谱数据表明,MH/fPVC复合材料内层残炭的/值为2.67,而MO@MH-5/fPVC、MO@MH-2/fPVC和MO@MH-1/fPVC复合材料内层残炭的/值分别降低至2.17、1.87和1.65。XPS结果表明,+6价Mo元素通过氧化还原反应参与fPVC基体成炭过程,生成+4价Mo化合物。最后,力学性能测试结果表明,MO@MH对fPVC基体的拉伸弹性模量和冲击强度的提升效果优于MH,MO@MH-1/fPVC复合材料的拉伸弹性模量和冲击强度相较于MH/fPVC复合材料分别提高了23.40%和32.34%。

    结论 

    纳米氧化钼杂化MH后,随着氧化钼含量的增加,MO@MH/fPVC复合材料的阻燃抑烟性能逐渐提高。阻燃抑烟性能的提高主要源于纳米氧化钼的Lewis酸催化交联作用,促使fPVC基体生成了结构更加致密、数量更多、石墨化程度更高的炭层,从而更加有效地阻隔了热量、氧气以及可燃性挥发物的传递。MO@MH/fPVC复合材料的拉伸弹性模量的提高则归因于MO@MH更加复杂的三维结构以及更强的刚性。

图(13)  /  表(3)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  53
  • PDF下载量:  13
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-03
  • 录用日期:  2024-10-25
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回