C/SiC壁板的制备层间缺陷特点及性能分析

谭志勇, 宁蕙, 孙前杨, 孙京阳, 黄建栋, 龚晓冬, 张宏宇

谭志勇, 宁蕙, 孙前杨, 等. C/SiC壁板的制备层间缺陷特点及性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 谭志勇, 宁蕙, 孙前杨, 等. C/SiC壁板的制备层间缺陷特点及性能分析[J]. 复合材料学报, 2024, 42(0): 1-12.
TAN Zhiyong, NING Hui, SUN Qianyang, et al. Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel[J]. Acta Materiae Compositae Sinica.
Citation: TAN Zhiyong, NING Hui, SUN Qianyang, et al. Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel[J]. Acta Materiae Compositae Sinica.

C/SiC壁板的制备层间缺陷特点及性能分析

基金项目: 国家自然科学基金(U20B2002, 52005100);江苏省自然科学基金青年项目(BK20220861)
详细信息
    通讯作者:

    孙前杨,博士研究生,研究方向为固体力学和结构动力学 E-mail: 220210390@seu.edu.cn

  • 中图分类号: TB332;V414.8

Characteristics and Performance Analysis of Interlayer Defects in the Preparation of C/SiC Panel

Funds: National Natural Science Foundation of China (U20B2002, 52005100); Natural Science Foundation of Jiangsu Province (BK20220861)
  • 摘要: 针对C/SiC复合材料壁板制备环节常见的分层开裂情况,选择树脂转移浸渍裂解(RTIP)成型/致密化工艺的产品为对象进行了特征和性能分析。对分层形貌进行观测认为,制备前期和复合后期的层间缺陷分别具有碳纤维束之间分层和碳纤维束内部开裂的两种不同特征。切割制备出C/SiC的无缺陷试验件、以及不同特征下具有不同层间缺陷尺度的试验件,开展强度性能测试。Ⅰ型、Ⅱ型层间断裂韧性试验均未产生层间裂纹尖端扩展的现象和数据特征,推断这种层间缺陷的裂纹尖端扩展阻力要明显大于标准试验采用的机加制备开缝情况。进一步进行了面内拉伸、面内压缩性能测试,分析了材料性能衰减的机制并由试验数据拟合得出与层间缺陷尺度之间的规律。为了在体现试验件整体损伤形貌的同时表征到层间缺陷区域的材料细节特征,采用了在缺陷近场细观形貌构造、远场宏观等效并在两者之间区域逐级过渡连接的宏/细观一体化多尺度数值建模和分析方法。计算的应力场特点进一步验证了试验判断的合理性。

     

    Abstract: In view of the common delamination cracking in the preparation of C/SiC composite panel, the characteristics and properties of the products produced by resintransfer infiltration pyrolysis (RTIP) molding/densification process were analyzed. The observation of delamination morphology shows that the interlayer defects in the early stage of preparation and the late stage of composite have two different characteristics: delamination between carbon fiber bundles and internal cracking of carbon fiber bundles.Non-defective specimens of C/SiC and specimens with different interlaminar defect scales under different characteristics were cut and prepared, and the strength performance were tested. The mode-Ⅰ and mode-Ⅱ interlaminar fracture toughness tests did not produce the phenomenon and data characteristics of interlayer crack tip propagation, so it is inferred that the interlayer tip propagation resistance of these defect is obviously greater than that of machining cracks used in standard tests. Furthermore, in-plane tensile and in-plane compressive tests were carried out, and the mechanism of material properties attenuation was analyzed, and the law between the material properties and interlayer defect scales was obtained by fitting the experimental data. In order to represent the overall damage morphology of the specimen and the material details of the interlayer defect region, a multi-scale macro-meso integrated numerical modeling method was adopted, which is composed of meso-morphology structure near the defect, macro-equivalence in the distance and the gradual transition connection between the two regions. The characteristics of the calculated stress field further verify the rationality of the experimental analysis.

     

  • 图  1   C/SiC壁板的层间缺陷情况

    Figure  1.   Interlayer defects of C/SiC panel

    图  2   C/SiC壁板的树脂转移浸渍裂解(RTIP)制备工艺流程

    Figure  2.   Resintransfer infiltration pyrolysis (RTIP) preparation process of C/SiC panel

    图  3   C/SiC壁板在碳纤维束内开裂的截面细观形貌

    Figure  3.   Cross-sectional micro-morphology of C/SiC panel cracked in carbon fiber bundles

    图  4   C/SiC壁板的纤维束(碳布)间分层缺陷细观形貌

    Figure  4.   Micro-morphology of delamination defects between carbon fiber bundles (fiber cloth)of C/SiC panel

    图  5   由C/SiC壁板切割制备的部分试验件及试验现场Fig.5 Partial test pieces prepared by cutting of C/SiC panel and testing ground

    图  6   C/SiC不同状态下试验件的拉伸强度数据及拟合Fig.6 Tensile strength data and fitting of C/SiC specimens under different states

    图  7   C/SiC拉伸试样的位移-应变曲线Fig.7 Displacement-strain curve of C/SiC tensile specimen

    图  8   C/SiC不同状态下试验件的压缩强度数据及拟合

    Figure  8.   Compressive strength data and fitting of C/SiC specimens under different states

    图  9   压缩试样的位移-应变曲线

    Figure  9.   Displacement-strain curve of compressive specimen

    图  10   测试的Ⅰ型层间断裂韧性载荷-位移曲线及试验件局部破坏形貌Fig.10 Load-displacement curve and failure morphology of modeⅠinterlaminar fracture toughness of C/SiC sample

    图  11   测试的Ⅱ型层间断裂韧性载荷-位移曲线及试验件局部破坏形貌

    Figure  11.   Load-displacement curve and failure morphology of modeⅡinterlaminar fracture toughness of C/SiC sample

    图  12   C/SiC无缺陷拉伸试样的破坏断口形貌

    Figure  12.   Fracture morphology of C/SiC tensile sample without defect

    图  13   C/SiC分层拉伸试样的破坏形貌及断口特征Fig.13 Failure morphology and fracture characteristics of C/SiC tensile specimen with interlayer defect

    图  14   C/SiC完整压缩试样的破坏形貌和断口特征

    Figure  14.   Failure morphology and fracture characteristics of C/SiC compressive specimen without defect

    图  15   C/SiC分层压缩试样的不同破坏形貌和断口特征

    Figure  15.   Different failure morphology and fracture characteristics of C/SiC compressive specimen with interlayer defect

    图  16   C/SiC含分层缺陷的宏/细观一体化多尺度数值模型

    Figure  16.   Macro/meso integrated multi-scale numerical model of C/SiC specimen with interlayer defects

    图  17   含分层缺陷宏细观一体化数值模型的应力云图

    Figure  17.   Stress contour for macro/meso integrated numerical model with interlayer defect

    表  1   宏/细观数值模型的材料参数

    Table  1   Material parameters of macro/meso numerical model

    Property Value
    Meso
    model
    Elastic modulus E1f of carbon fiber bundles /GPa 200.15
    Elastic modulusE2fE3f of carbon fiber bundles /GPa 45.86
    Shear modulus G12fG13f of carbon fiber bundles /GPa 25.96
    Shear modulus G23f of carbon fiber bundles /GPa 16.87
    Poisson's ratioν12fν13f of carbon fiber bundles 0.23
    Poisson's ratioν23f of carbon fiber bundles 0.36
    Elastic modulusEm ofSiC matrix/GPa 81.00
    Poisson's ratioνm ofSiC matrix 0.15
    Macro model Elastic modulusE1E2/GPa 118.36
    Elastic modulusE3/GPa 59.18
    Shear modulus G12/GPa 35.87
    Shear modulus G13G23/GPa 19.37
    Poisson's ratioν12 0.25
    Poisson's ratioν13ν23 0.35
    下载: 导出CSV
  • [1] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195.

    FENG Zhihai, LI Junning, TIAN Yuelong, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta MateriaeCompositae Sinica, 2022, 39(9): 4187-4195(in Chinese).

    [2] 韩国凯, 解维华, 孟松鹤, 等. 防隔热一体化复合材料整体性能优化设计方法[J]. 复合材料学报, 2019, 36(2): 450-460.

    HANGuokai, XIEWeihua, MENGSonghe, et al. Optimization design method of integrated thermal protection/insulation composite material[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 450-460.

    [3] 马雪寒, 王守财, 陈旭, 等. 陶瓷基复合材料紧固件制造技术及其连接性能研究进展[J]. 复合材料学报, 2023, 40(6): 3075-3089.

    MA Xuehan, WANG Shoucai, CHEN Xu, et al. Review of preparation processes and joining performance of ceramic matrix compositefasteners[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3075-3089(in Chinese).

    [4] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509.

    ZHAO Libin, GONG Yu, ZHANG Jianyu. A Survey on Delamination Growth Behavior in Fiber Reinforced Composite Laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509(in Chinese).

    [5]

    MEI H, CHENG L F, ZHANG L T, et al. Behavior of two-dimensional C/SiC composites subjected tothermal cycling in controlled environments[J]. Carbon, 2006, 44: 121-127. DOI: 10.1016/j.carbon.2005.07.003

    [6]

    ASTM International. Standard test method for mixed mode Ⅰ-mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites: ASTM D6671/D6671M-13el[S]. West Conshohocken, PA: ASTM International, 2013.

    [7] 童瑶, 刘磊, 朱书华. 含分层复合材料层板压缩剩余强度分析[J]. 航空计算技术, 2022, 52(1): 110-114. DOI: 10.3969/j.issn.1671-654X.2022.01.025

    TONG Yao, LIU Lei, ZHU Shuhua. Analysis of Compressive Residual Strength of Composite Laminates with Delamination[J]. Aeronautical Computing Technique, 2022, 52(1): 110-114(in Chinese). DOI: 10.3969/j.issn.1671-654X.2022.01.025

    [8] 肖梦丽, 张勇波, 王治华, 等. 分层损伤对含孔复合材料层合板拉伸剩余强度影响[J]. 航空动力学报, 2016, 31(5): 1081-1086.

    XIAO Mengli, ZHANG Yongbo, WANG Zhihua. Effect analysis of delamination damage on the residual strength of notched composite laminates[J]. Journal of Aerospace Power, 2016, 31(5): 1081-1086(in Chinese).

    [9]

    Mei H, Tan Y F, Zhang D, et al. A novel delamination defects designed for understanding mechanical degradation in a laminated C/SiC composites[J]. Journal of Alloys and Compounds, 2019, 770: 1138-1146. DOI: 10.1016/j.jallcom.2018.08.104

    [10]

    WANG X, ZHANG Z, XIE F, et al. Correlated Rules between Complex Structure of Composite Components and Manufacturing Defects in Autoclave Molding Technology[J]. Journal of Reinforced Plastics and Composites, 2009, 28(22): 2791-2803. DOI: 10.1177/0731684408093876

    [11] 王雪明, 谢富原. 复合材料层合板分层缺陷及其实验模拟方法研究[J]. 纤维复合材料, 2020, 37(4): 30-34.

    WANG Xueming, XIE Fuyuan, Study on Experimental Simulation Method of Delamination Defects in Composite Laminates[J]. Fiber Composites, 2020, 37(4): 30-34(in Chinese).

    [12]

    LIU Y, ZHANG C, XIANG Y. A critical plane-based fracture criterion for mixed-mode delamination in composite materials[J]. Composites Part B: Engineering, 2015, 82: 212-220. DOI: 10.1016/j.compositesb.2015.08.017

    [13]

    FROSSARD G, CUGNONI J, GMUR T, et al. An efficient method for fiber bridging traction identification based on the R-Curve: Formulation and experimental validation[J]. Composite Structures, 2017, 175: 135-144 DOI: 10.1016/j.compstruct.2017.04.032

    [14] 黄勇, 宁志华. 纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟[J]. 复合材料学报, 2022, 39(5): 2504-2514.

    HUANG Yong, NING Zhihua. Simulation of buckling and delamination propagation of composite laminates with fiber bridging[J]. ActaMateriae Compositae Sinica, 2022, 39(5): 2504-2514(in Chinese).

    [15]

    SHOKRICH M M, SALAMAT-TALAB M. HEIDARIRARANI M. Effect of initial crack length on the measured bridging law of unidirectional E-glass/ epoxy double cantilever beam specimens[J]. Materials & Design, 2014, 55: 605-611.

    [16] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. ActaMateriae Compositae Sinica, 2021, 38(4): 1076-1086(in Chinese).

    [17]

    WU H, XIAO J, XING S, et al. Numerical and experimental investigation into failure of T700/ bismaleimide composite T-joints under tensile loading[J]. Composite Structures, 2015, 130: 63-74. DOI: 10.1016/j.compstruct.2015.04.019

    [18] 籍永青, 徐颖, 游彦宇. 含分层复合材料层合板拉伸剩余强度研究[J]. 机械制造与自动化, 2021, 2: 51-54.

    JI Yongqing, XU Ying, YOU Yanyu. Research on Residual Tensile Strength of Composite Laminates with Initial Delamination[J]. Machine Building & Automation, 2021, 2: 51-54(in Chinese).

    [19] 陈刘定, 童小燕, 程起有, 等. 平纹编织C/SiC复合材料层间断裂行为试验研究[J]. 机械强度, 2012, 34(1): 097-101.

    CHENLiuding, TONGXiaoYan, CHENQiyou, et al. Experimental investigation on interlaminar fracture behavior of plain weave C/SiC composites[J]. Journal of Mechanical Strength, 2012, 34(1): 097-101(in Chinese).

    [20] 刘斌, 高一迪, 谭志勇, 等. 二维叠层C/SiC复合材料低能量冲击损伤实验[J]. 航空学报, 2021, 42(2): 224202.

    LIU Bin, GAO Yidi, TAN Zhiyong. Low energy level impact damage on 2D C/SiC composites: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224202(in Chinese).

    [21]

    ASTM International. Standard test method for modeⅠ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-13[S]. West Conshohochen, PA: ASTM International, 2013.

    [22]

    ASTM International. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14[S]. West Conshohochen, PA: ASTM International, 2014.

    [23] 杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3): 617-624.

    YANG Qiang, XIEWeihua, MENGSonghe, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 617-624.

    [24]

    LI Y H, MA Y, GUAN T H, et al. A meso-scale stochastic model for tensile behavior of 2D woven ceramic composites considering void defects and stacking mode[J]. Composites Part A, 2024, 176: 107838. DOI: 10.1016/j.compositesa.2023.107838

    [25]

    YAN W D, REN Z Y, FAN X Y, et al. Multi-scale pore model construction and damage behavior analysis of SiCf/ SiC composite tubes[J]. Materials Characterization, 2024, 214: 114083. DOI: 10.1016/j.matchar.2024.114083

    [26] 谭志勇, 阎君, 宁蕙, 等. 宏/细观一体化多尺度数值分析的进展与应用[J]. 强度与环境, 2023, 50(5): 1-10.

    TANZhiyong, YANJun, NINGHui, et al. Developments and Application of Macro-Meso Integration Multi-Scale Numerical Analysis Method[J]. Structure & Environment Engineering, 2023, 50(5): 1-10(in Chinese).

  • 目的 

    高品质的C/SiC大尺寸壁板构件制备是满足高速飞行器大型薄壁热结构的关键环节之一。而分层开裂是C/SiC壁板类存在的最常见且严重影响构件力学性能的一种缺陷。对C/SiC壁板产品的层间缺陷的机制分析、缺陷复现、性能测试和分析评价是保证热结构可靠使用的重要研究内容。

    方法 

    针对C/SiC复合材料壁板制备环节常出现的分层开裂情况,以树脂转移浸渍裂解(RTIP)成型/致密化工艺的产品对象制备的热结构薄壁件为对象,进行了形貌观测并总结了层间裂纹的产生原因。对已有含缺陷平板进行切割加工获得了试验件,进行了完整无缺陷试验件、以及不同特征下具有不同分层尺度的面内拉伸、面内压缩以及Ⅰ型和Ⅱ型层间断裂韧性试验,基于试验结果分析了分层缺陷对材料层间力学性能的影响。进一步进行了面内拉伸、面内压缩性能测试,分析了层间缺陷条件下C/SiC材料性能衰减的机制和试验数据特点,并由试验数据拟合得出强度衰减量与分层尺度之间的规律。在数值仿真分析方面,采用缺陷近场细观形貌构造、远场宏观等效并在两者之间过渡区域连接的宏/细观一体化数值建模,获得了试验件整体损伤形貌以及表征了材料缺陷的细节特征。

    结果 

    ①制备前、后期的层间缺陷普遍具有纤维束间分层和纤维束内开裂的不同类型,缺陷仍具备一定的层间性能关联,其前缘应力集中不敏感。Ⅰ型和Ⅱ型层间断裂韧性试验均未获得理论的张开型和滑移型分层扩展;面内拉伸和压缩试验也不满足断裂力学的相关规律。这与采用机加制备层状缝隙的情况明显不同。②采用对含缺陷平板进行切割加工可获得非标形状但接近于真实状态的材料试验件,加工对性能的影响较小。拉伸试验得出其力学性能有限下降且与缺陷长度呈弱相关性;而压缩试验产生屈曲和强度破坏两种不同模式,屈曲破坏的性能衰减更大、并基本与分层长度线性相关。推导的性能拟合公式与材料常数、试验件厚度、有效长度及分层长度相关。③采用宏/细观多尺度一体化的数值模型可兼顾对层间缺陷的真实形貌模拟以及获得试样整体结果。宏观等效单元和细观单元之间采用过渡区域连接可有效解决界面不协调的难点。计算结果验证了试验得到的层间缺陷下C/SiC材料破坏机理和性能规律判断。

    结论 

    C/SiC壁板在制备前期和复合后期产生的分层缺陷主要具有纤维束之间分层和纤维束内部开裂的不同特征。缺陷试验件的裂纹尖端扩展阻力要明显大于普通的机加制备缝隙情况,拉伸力学性能有限下降且与缺陷长度呈弱相关性;压缩下屈曲破坏的性能衰减更大、并基本与分层长度线性相关。

  • 高品质的C/SiC大尺寸壁板构件制备是满足高速飞行器大型薄壁热结构的关键环节之一。而分层开裂是C/SiC壁板类存在的最常见且严重影响构件力学性能的一种缺陷。对C/SiC壁板产品的分层开裂缺陷的机制分析、缺陷复现、性能测试和分析评价是保证热结构可靠使用的重要研究内容。

    本文针对C/SiC复合材料壁板制备环节常出现的分层开裂情况,选择树脂转移浸渍裂解(RTIP)成型/致密化工艺的产品对象进行了特征和性能分析。首先通过制备工艺过程分析和分层形貌观测,认为制备前期和复合后期的层间缺陷普遍具有纤维束(碳布)之间分层和碳纤维束内部开裂的两种不同特征。由于要重复稳定制备出含分层开裂缺陷的C/SiC试验件具有很大难度,尝试的在碳布织物内设置预埋物的方法与实际制备工艺产生的层间缺陷具有很大差异,对此采用了对已有含缺陷平板进行切割加工获得非标形状但最接近于真实状态的试验件。进行了完整无缺陷试验件、以及不同特征下具有不同分层尺度的面内拉伸、面内压缩以及Ⅰ型和Ⅱ型层间断裂韧性试验。

    从完成的Ⅰ型、Ⅱ型层间断裂韧性试验均未产生分层裂纹尖端扩展的现象和数据规律性,推断这种分层缺陷虽然明显影响了材料正常的层间力学性能,但与通常机加制备的层状缝隙情况有明显差异,在整个分层开裂范围会存在不同程度的性能关联。这将导致裂纹前缘的应力集中不敏感、并抑制加载过程中层间缺陷继续扩展的趋势。进一步进行了面内拉伸、面内压缩性能测试,分析了这种制备层间缺陷条件下C/SiC材料性能衰减的机制和试验数据特点,并由试验数据拟合得出强度衰减量与分层尺度之间的规律。在数值仿真分析方面,采用缺陷近场细观形貌构造、远场宏观等效并在两者之间过渡区域连接的宏/细观一体化数值建模,可在获得试验件整体损伤形貌的同时表征到材料缺陷的细节特征,对试验具有较好的分析模拟效果。计算得到的应力场特点验证了对试验分析的合理性。

    Tensile test condition, data law and multi-scale model simulation of C/SiC panel under interlaminar defects

图(17)  /  表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  63
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-09-19
  • 录用日期:  2024-09-25
  • 网络出版日期:  2024-10-11

目录

    /

    返回文章
    返回