基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用

吕英华, 陈雨阳, 王存民, 李欣雨, 朱桂英, 张明明, 朱金佗, 徐欢

吕英华, 陈雨阳, 王存民, 等. 基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用[J]. 复合材料学报, 2025, 42(6): 3181-3191.
引用本文: 吕英华, 陈雨阳, 王存民, 等. 基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用[J]. 复合材料学报, 2025, 42(6): 3181-3191.
LV Yinghua, CHEN Yuyang, WANG Cunmin, et al. Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3181-3191.
Citation: LV Yinghua, CHEN Yuyang, WANG Cunmin, et al. Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3181-3191.

基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用

基金项目: 国家自然科学基金(52003292;52174222);国家重点研发计划(2023YFC3011704);江苏省自然科学基金(BK20200661);国家能源集团十大重点科技攻关项目(E210100285)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士生导师,研究方向为安全防护材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: X513;TB332

Enhanced air filtration performance and intelligent monitoring by MOF-functionalized ultrafine poly(lactic acid) fibers

Funds: National Natural Science Foundation of China (52003292, 52174222); National Key R&D Program (2023YFC3011704); Natural Science Foundation of Jiangsu Province (BK20200661); Key Science and Technology Program of CHN Energy Group (E210100285)
  • 摘要:

    在工业和医疗场所,传统不可降解过滤材料的大量使用已造成巨大生态环境压力。为此,研究和发展聚乳酸(PLA)纤维膜已成为前沿热点。在此基础上,提出利用同轴静电纺丝技术将高介电性能金属有机框架材料(MOF)嵌入纤维的表面工程策略,制备了用于呼吸防护装备的驻极效果优异、高电活性、可完全降解的聚乳酸纳米纤维膜,同时实现高效过滤和呼吸状态监测。通过调控纤维形貌和改善电活性,提高纤维的物理拦截和静电吸附能力,提升对颗粒物的过滤效率,多种表征测试结果表明:纤维平均直径降低33%(304 nm),表面电势提高38% (1.8 kV),介电常数提高55% (1.7),输出电压提高74% (87 V),对PM0.3的过滤效率高达99.65% (32 L/min),即使在85 L/min的高流量下过滤效率也在99.30%,且无显著衰减。在呼吸防护的基础上集成传感功能,可实现对人呼吸状态的实时监测,为疾病的早期诊断提供了参考,在个体防护领域有广阔的应用前景。

     

    Abstract:

    The extensive use of traditional non-biodegradable filtration materials in industrial and medical sites has caused tremendous ecological and environmental pressure. For this reason, the research and development of poly(lactic acid) (PLA) fibrous membranes have become a cutting-edge hotspot. Based on this, the surface engineering strategy of using coaxial electrostatic spinning to embed high dielectric performance metal-organic framework (MOF) materials into fibers is proposed to prepare PLA nanofibrous membranes with excellent electronegativity, high electroactivity, and complete degradability for respiratory protection equipment, which can simultaneously achieve high-efficiency filtration and respiratory status monitoring. By regulating the fiber morphology and improving the electroactivity, the physical interception and electrostatic adsorption ability of the fibers were improved to enhance the filtration efficiency of particulate matter. The results of multiple characterization tests showed that the average fiber diameter was reduced by 33% (304 nm), the surface potential was increased by 38% (1.8 kV), the dielectric constant was increased by 55% (1.7), and the output voltage was increased by 74% (87 V). The filtration efficiency for PM0.3 is up to 99.65% (32 L/min), and even at a high flow rate of 85 L/min, the filtration efficiency is still at 99.30% with no significant attenuation. Integrating the sensing function based on respiratory protection can realize the real-time monitoring of human respiratory status, which provides a reference for the early diagnosis of diseases and has a broad application prospect in the field of personal protection.

     

  • 图  1   聚乳酸(PLA)/MIL-88A纳米纤维膜制备流程和自主搭建的空气过滤性能测试装置

    Figure  1.   Preparation process of poly(lactic acid) (PLA)/MIL-88A nanofiber membranes and homemade air filtration test equipment

    图  2   PLA/MIL-88A纳米纤维膜扫描电子显微镜(SEM)图像及纤维直径分布

    Figure  2.   Scanning electron microscope (SEM) images and diameter distributions of PLA/MIL-88A nanofibrous membranes

    图  3   PLA/MIL-88A纳米纤维膜傅里叶变换红外光谱(FTIR)图

    Figure  3.   Fourier transform infrared spectroscopy (FTIR) images of PLA/MIL-88A nanofiber membranes

    图  4   PLA/MIL-88A纳米纤维膜表面电势和介电常数

    Figure  4.   Surface potential and dielectric constant of PLA/MIL-88A nanofiber membranes

    图  5   PLA/MIL-88A纳米纤维膜组装的摩擦纳米发电机示意及其输出电压

    Figure  5.   Schematic of triboelectric nanogenerator assembled with PLA/MIL-88A nanofiber membranes and their voltage output

    图  6   PLA/MIL-88A纳米纤维膜的PM0.3过滤性能评价。(a-d)过滤效率和压降、(e)品质因子、(f)与已报道的纤维滤料的PM0.3过滤性能对比

    Figure  6.   Filtration efficiency evaluation for PM0.3 of PLA/MIL-88A nanofiber membranes. (a-d) Filtration efficiency, (e) Quality factor, (f) Comparison of PM0.3 filtration efficiency with other existing fibrous filter

    图  7   PLA/MIL-88A纳米纤维膜用于呼吸状态监测

    Figure  7.   PLA/MIL-88A nanofiber membrane for respiratory rate monitoring

  • [1] 王桂军, 张辉. 新时代建设现代化产业体系: 成就、问题与路径选择[J]. 教学与研究, 2023, (6): 12-30. DOI: 10.3969/j.issn.0257-2826.2023.06.002

    WANG G J, ZHANG H. Research on the Achievements, Problems and Paths of Building a Modern Industrial System in the New Era[J]. Teaching and Research, 2023, (6): 12-30(in Chinese). DOI: 10.3969/j.issn.0257-2826.2023.06.002

    [2]

    BACHER J, RINTALA L, HORTTANAINEN M. The effect of crusher type on printed circuit board assemblies’ liberation and dust generation from waste mobile phones[J]. Minerals Engineering, 2022, 185: 11.

    [3]

    CUI Y Q, YIN J, CAI Y T, et al. Spatial distribution characteristics of the dust emitted at different cutting speeds during MDF milling by image analysis[J]. Journal of Wood Science, 2022, 68(1): 13. DOI: 10.1186/s10086-022-02019-4

    [4]

    LIU B, YIN W J, XU K L, et al. Inerting Waste Al Alloy Dust with Natural High Polymers: Sustainability of Industrial Waste[J]. Materials, 2022, 15(16): 5540-5540. DOI: 10.3390/ma15165540

    [5]

    LU X X, ZHANG H, CHEN Y M, et al. The evaluation analysis on the airborne dust regional pollution of the anchor drilling operation in the tunnel.[J]. Environmental science and pollution research international, 2023, 30(34): 82906-82926. DOI: 10.1007/s11356-023-28093-9

    [6]

    ROSA P, PEDRO S, HÉctor G, et al. Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke[J]. Atmospheric Environment, 2023, 298: 9.

    [7]

    PRABHJOT S, ARUNANGSHU M, PUNIT G. Performance of surface finished polyester filter media exposed to different dust types with the variation of dust concentration[J]. Powder Technology, 2023, 426: 11.

    [8] 左培杰, 黄俞铭, 李翔宇, 等. 基于电感耦合等离子体质谱的大气细颗粒物的多维表征研究进展[J]. 分析测试学报, 2024, 43(3): 501-510.

    ZUO P J, HUANG Y M, LI X Y, et al. Recent advance in multi-dimensional characterization on atmospheric fine particulate matter based on inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2024, 43(3): 501-510(in Chinese).

    [9] 巫燕园, 刘逸凡, 汤蓉, 等. 中国特大城市群PM2.5污染及健康负担的时空演变特征[J]. 南京大学学报(自然科学), 2024, 60(1): 158-167.

    WU Y Y, LIU Y F, TANG R, et al. Spatiotemporal evolution characteristics of PM2.5 pollution andhealth burden in mega-urban agglomerations of China[J]. Journal of Nanjing University (Natural Science), 2024, 60(1): 158-167(in Chinese).

    [10]

    LIU Z X, ZHU Q S, SONG E Q, et al. Characterization of blood protein adsorption on PM2.5 and its implications on cellular uptake and cytotoxicity of PM2.5[J]. Journal of Hazardous Materials, 2021, 414: 125499-125499. DOI: 10.1016/j.jhazmat.2021.125499

    [11]

    LIU H, ZHANG S C, LIU L F, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 8.

    [12]

    ZHANG S C, LIU H, TANG N, et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Advanced Materials, 2020, 32(49): 1.

    [13]

    CANU I G, WILD P, CHARREAU T, et al. Long-term exposure to PM10 and respiratory health among Parisian subway workers[J]. International Journal of Hygiene and Environmental Health, 2024, 256: 114316-114316. DOI: 10.1016/j.ijheh.2023.114316

    [14] 黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024, 45(1): 162-171.

    HUANG R T, ZHU G Y, LI X Y, et al. Morphological manipulation of highly electroactive poly(lactic acid) nanofibrous membranes for efficient removal of airborne PM0.3[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 162-171(in Chinese).

    [15] 柴喜存, 周凌蕾, 何春霞. 竹纤维和海藻酸钠提升聚乳酸的降解性能[J]. 复合材料学报, 2023, 40(6): 3553-3561.

    CHAI X C, ZHOU L L, HE C X. Study on bamboo fiber and sodium alginate enhancing the degradability of polylactic acid[J]. Acta Matriae Compositae Sinica, 2023, 40(6): 3553-3561(in Chinese).

    [16] 杨奇, 刘高慧, 黄琪帏, 等. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(1): 12-22.

    YANG Q, LIU G H, HUANG Q W, et al. Study on correlation between charge storage and filtration performance of melt-blown polylactic acid/polyvinylidene fluoride electret air filter materials[J]. Journal of Textile Research, 2024, 45(1): 12-22(in Chinese).

    [17]

    XU S, ZHANG D A, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. DOI: 10.1016/j.seppur.2024.127164

    [18] 屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(3): 1141-1152.

    QU Z, XIA G B, FANG J. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Matriae Compositae Sinica, 2024, 41(3): 1141-1152 (in Chinese).

    [19] 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379.

    LI M Z, JIA G W, ZHAO Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379(in Chinese).

    [20]

    WANG R, XU H J, ZHANG K, et al. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite[J]. Journal of Hazardous Materials, 2019, 364: 272-280. DOI: 10.1016/j.jhazmat.2018.10.030

    [21]

    CHEN J X, YANG Z Z, LI W G, et al. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline[J]. Environmental Science and Pollution Research, 2024, 31(17): 25273-25286. DOI: 10.1007/s11356-024-32677-4

    [22]

    JING L Q, XU Y G, XIE M, et al. Rational construction of visible-light-driven perylene diimides/Fe2O3@C derived from MIL-88A (Fe) heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of antibiotics[J]. Journal of Colloid and Interface Science, 2024, 659: 520-532. DOI: 10.1016/j.jcis.2024.01.011

    [23]

    LONG Z W, DAI H, WU C Q, et al. Growth-controllable spindle chain heterostructural anodes based on MIL-88A for enhanced lithium/sodium storage[J]. Advanced Fiber Materials, 2024, 6(1): 297-311. DOI: 10.1007/s42765-023-00360-x

    [24]

    KHANDELWAL G, RAJ N, VIVEKANANTHAN V, et al. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator[J]. iScience, 2021, 24(2): 18.

    [25]

    HMOUDAH M, EL-QANNI A, TESSER R, et al. Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations[J]. Materials Science and Engineering: B, 2023, 288: 10.

    [26]

    SAKTHI P T, CHEN T W, CHEN S M, et al. MIL-88A derived zerovalent iron embedded mesoporous carbon with carbon black composite based electrochemical sensor for the detection of metol[J]. Carbon, 2024, 223: 119026. DOI: 10.1016/j.carbon.2024.119026

    [27]

    VISWANATHAN V P, MATHEW S V, DUBAL D P, et al. Exploring the effect of morphologies of Fe(III) metal-organic framework MIL-88A(Fe) on the photocatalytic degradation of rhodamine B[J]. ChemistrySelect, 2020, 5(25): 7534-7542. DOI: 10.1002/slct.202001670

    [28]

    WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.

    [29]

    ZHANG Z B, ERSAN M S, WESTERHOFF P, et al. Do surface charges on polymeric filters and airborne particles control the removal of nanoscale aerosols by polymeric facial masks?[J]. Toxics, 2024, 12(1): 17.

    [30]

    BAIK S J, JEON S, KIM G W, et al. Composition dependent charge retention in amorphous HfxAl1−xOy dielectric layers[J]. Journal of Applied Physics, 2023, 133(16): 6.

    [31]

    PENG Z H, SHI J H, XIAO X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nature Communications, 2022, 13(1): 10. DOI: 10.1038/s41467-021-27507-x

    [32]

    CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023, 3(1): 39. DOI: 10.1038/s43586-023-00220-3

    [33]

    AKRAM W, CHEN Q, XIA G, et al. A review of single electrode triboelectric nanogenerators[J]. Nano Energy, 2023, 106: 108043. DOI: 10.1016/j.nanoen.2022.108043

    [34]

    AMALIA R, NOVIYANTO A, RAHMA L A, et al. PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration[J]. Sustainable Materials and Technologies, 2024, 40: e00928. DOI: 10.1016/j.susmat.2024.e00928

    [35]

    HOSSAIN M, KARMAKAR K, SARKAR P, et al. Self-Sanitization in a Silk Nanofibrous Network for Biodegradable PM0.3 Filters with In Situ Joule Heating[J]. Acs Omega, 2024, 9(8): 9137-9146. DOI: 10.1021/acsomega.3c08020

    [36]

    LIN M G, SHEN J L, QIAN Q A, et al. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal-Organic Frameworks for Efficient Air Filtration and Bacteriostasis[J]. Polymers, 2024, 16(7): 14.

    [37]

    MATON M, GABUT S, NEUT C, et al. Antiviral functionalization of a polypropylene nonwoven textile structure as a self-decontaminating layer for respiratory masks[J]. Biomaterials Science, 2023, 11(10): 3502-3511. DOI: 10.1039/D2BM01988D

    [38]

    SU C, ZHANG L, ZHANG Y, et al. P(VDF-TrFE)/BaTiO3 Nanofibrous Membrane with Enhanced Piezoelectricity for High PM0.3 Filtration and Reusable Face Masks[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5845-5855.

    [39]

    Fang Y, Xu J, Xiao X, et al. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring[J]. Advanced Materials, 2022, 34(24): 2200252. DOI: 10.1002/adma.202200252

    [40]

    ZHAO L, ZHANG F, ZHANG H, et al. Robust respiratory rate monitoring using smartwatch photoplethysmography[J]. IEEE Internet of Things Journal, 2023, 10(6): 4830-4844. DOI: 10.1109/JIOT.2022.3219813

  • 期刊类型引用(14)

    1. 佘永明,代鹰,张黎,李梁. 基于钢丝绳内聚力模型参数的构件与验证. 煤炭工程. 2024(09): 172-178 . 百度学术
    2. 戴京涛,刘浩东,赵培仲,苏洪波,付亚峰,曲利峰. 基于声发射检测的复合材料粘接铝合金结构失效模式研究. 中国胶粘剂. 2023(02): 14-19+69 . 百度学术
    3. 余海燕,邢萍,吴航宇. 碳纤维复合材料胶铆接头静态拉伸和循环拉伸失效行为. 同济大学学报(自然科学版). 2023(02): 256-263 . 百度学术
    4. 邵家儒,刘牛,杨瑜,郑子君. CFRP复合材料构件胶接特性及失效规律研究. 应用力学学报. 2023(05): 1058-1067 . 百度学术
    5. 戴姝,胡卓尔,张伟强. 基于FTIR的变电站建筑玻璃砖粘接剩余强度测试研究. 粘接. 2023(11): 57-60 . 百度学术
    6. 崔樱华,卢青针,尹原超,张陶. 基于内聚力方法的海缆接头轴向承载能力预测. 海洋技术学报. 2022(02): 93-102 . 百度学术
    7. 邹田春,巨乐章,符记,刘志浩,李晔. CFRP-铝合金单搭接胶接接头疲劳寿命和失效模式. 复合材料学报. 2022(12): 6078-6087 . 本站查看
    8. 那景新,王广彬,庄蔚敏,慕文龙,徐千卉. 复合材料粘接结构强度与环境耐久性综述. 交通运输工程学报. 2021(06): 78-93 . 百度学术
    9. 秦国锋,那景新. 复合材料胶接接头温度-湿度-载荷老化机理研究概述. 中国胶粘剂. 2020(03): 57-65 . 百度学术
    10. 唐既尧,关志东. 含表面裂纹的复合材料层压板剩余强度的工程算法. 民用飞机设计与研究. 2020(01): 106-112 . 百度学术
    11. 戴京涛,刘浩东,赵培仲,苏洪波,董世康,汪余博,尚晨,曲利峰. 修复工艺对复合材料抗拉强度的影响. 兵器材料科学与工程. 2020(03): 18-22 . 百度学术
    12. 栾建泽,那景新,谭伟,慕文龙,秦国锋. 服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测. 复合材料学报. 2020(08): 1884-1893 . 本站查看
    13. 秦国锋,黄春阳,糜沛纹,慕文龙. 界面失效对单搭接粘接接头失效的影响及其预测方法. 中国胶粘剂. 2020(09): 1-7 . 百度学术
    14. 戴京涛,刘浩东,赵培仲,苏洪波,董世康,汪余博,尚晨,曲利峰. 铺层形状对复合材料粘接修复铝合金结构性能的影响. 中国胶粘剂. 2020(12): 17-21+26 . 百度学术

    其他类型引用(13)

  • 其他相关附件

  • 目的 

    在工业和医疗场所,人们使用大量的呼吸防护装备以避免粉尘和病毒气溶胶被吸入,而商用呼吸防护装备中的不可降解过滤材给生态环境带来了极大的压力。聚乳酸(PLA)得益于良好的热稳定性、可加工性、生物相容性、抗溶剂性、力学性能有望成为下一代空气过滤材料。为此,本文提出利用同轴静电纺丝技术将高介电性能金属有机框架材料(MOF)嵌入纤维的表面工程策略,研究其对于纤维形貌、电活性、过滤性能的影响,探索纤维膜在呼吸监测方面的应用。

    方法 

    采用水热法制备出MIL-88A纳米晶,利用同轴静电纺丝技术,将MIL-88A纳米晶嵌入PLA纤维制备了超细直径的可降解生物相容性驻极体纤维膜(PLA/MIL-88A)。采用扫描电镜(SEM)观察样品的外观形貌。采用傅里叶变换红外光谱仪表征样品的化学性质。采用介电测试仪检测样品的介电常数。采用静电测试仪测试样品的表面电势。采用微型滑台电缸测试样品的摩擦电输出性能。采用自主搭建的过滤性能测试装置测试样品的PM过滤效率。采用自主搭建的呼吸监测装置研究样品在呼吸状态监测方面的应用。

    结果 

    随着MIL-88A含量的增加,PLA/MIL-88A纤维膜的直径不断降低,其中PLA/30MIL-88A的直径最低,为304 nm。超细的纤维直径提高了纤维膜的物理拦截能力,提高对于较大直径颗粒物的过滤效率。同时,MIL-88A的引入提高了纤维膜的电活性,表面电势提高38%(1.8 kV),相对介电常数提高55%(1.7),电活性的提高意味着纤维表面能够贮存更多电荷,提高了纤维膜依靠静电吸附的过滤效果。此外摩擦电输出电压提高了74%(87V),纤维膜依靠摩擦起电可以补偿其在使用和存放过程中的电荷损耗,延长使用寿命。在PM过滤测试中,PLA/30MIL-88A效果最好,在较低的流速(32 L/min)下,过滤效率高达99.65%,并且展现除了对流速变化的良好抵抗性,即使在流速升高至85 L/min也能保持99.30%的过滤效率。最后,利用自主搭建的呼吸监测装置,以摩擦电信号作为变量对人呼吸的频率进行监测,信号波峰和波谷对应呼气和吸气,极小的峰宽度能够保证频率测量的准确度,为呼吸健康状况评估提供依据。

    结论 

    (1)水热法制备了生物相容性MOF材料MIL-88A;MIL-88A直接分散在聚乳酸溶液中进行静电纺丝制备了纤维膜;制备方法简单迅速,产物可完全降解且对人体无毒害作用。(2)MIL-88A的引入,对于纤维膜的微观形貌、电活性、电荷再生性能均有改善,共同提高了纤维膜的过滤效率。随着MIL-88A含量的不断增加,纤维平均直径从455 nm降低至304 nm,得到细化;表面电位和介电常数分别提高至1.8 kV和1.7,纤维膜储存电荷的能力增强;输出电压从50 V升高到87 V,再生电荷可以弥补储存和使用过程中耗散的电荷;对于PM的过滤效率在85 L/min的流量下也能实现高达99.30%。(3)在呼吸防护基础上集成了呼吸传感功能,能够提供准确的呼吸状态监测,为疾病的早期诊断提供参考依据。

  • 聚乳酸(PLA)得益于良好的热稳定性、可加工性、生物相容性、抗溶剂性、力学性能有望取代目前商用的聚丙烯成为下一代空气过滤材料,但较差的驻极效果限制了其在空气过滤领域的应用。金属有机框架材料MIL-88A具有比表面积大、吸附性能好、表面活性高、介电性能优异的特点,与PLA复合可以进一步提高纤维的驻极效果和表面活性,提高纤维膜对于PM0.3的过滤效率。

    本文将高介电、纳米尺寸MIL-88A分散在聚乳酸溶液中进行同轴静电纺丝,制备出了超细直径、高过滤效率(PM0.3)的可降解生物相容性驻极体纤维膜。MIL-88A的引入,对于纤维膜的微观形貌、电活性、电荷再生性能均有改善,共同提高了纤维膜的过滤效率。随着MIL-88A含量的不断增加,纤维平均直径从455 nm降低至304 nm,得到细化;表面电位和介电常数分别提高至1.8 kV和1.7,纤维膜储存电荷的能力增强;摩擦电输出电压从50 V升高到87 V,再生电荷可以弥补储存和使用过程中耗散的电荷;对于PM0.3的过滤效率在85 L/min的流量下也能实现高达99.30%。以摩擦电信号作为变量对人呼吸的频率进行监测,信号波峰和波谷对应呼气和吸气,极小的峰宽度能够保证频率测量的准确度,为呼吸健康状况评估提供依据。

    PLA/MIL-88A纳米纤维膜在85 L/min时的过滤效率(PM0.3)和呼吸监测应用

图(7)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  70
  • PDF下载量:  7
  • 被引次数: 27
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-13
  • 录用日期:  2024-08-16
  • 网络出版日期:  2024-09-04
  • 刊出日期:  2025-06-14

目录

    /

    返回文章
    返回