Effects of nano-graphene oxide and ethylene-vinyl acetate rubber powder on mechanical properties and microstructure of mortar
-
摘要:
本文采用纳米氧化石墨烯(GO)和乙烯-醋酸乙烯酯胶粉(EVA)对普通水泥砂浆进行改性,利用FTIR、XRD、TG、NMR及SEM等测试手段,在材料的化学组成、孔隙结构和微观形貌等方面揭示了GO和EVA对水泥砂浆力学性能的影响机制。结果表明:分散良好的GO降低了新拌砂浆的流动度,EVA的加入改善了这一现象;单掺0.03wt% GO的试件力学性能达到最佳,7 d龄期的抗压、抗折强度较基准组(PC)试件提高了24.1%和31%。GO和EVA复掺后,掺量分别控制在0.03wt%和4wt%时试件的28 d力学性能最优,抗压、抗折强度分别为72 MPa和12 MPa,较PC试件提高了25.9%和33.3%。微观试验结果表明:GO的成核效应加速了水泥水化进程并且可以调节花状水化晶体的产生和生长,从而细化试样孔径分布,良好的填充效应使得孔隙结构变得更加致密。EVA早期形成网状薄膜阻碍水泥水化进程,在水化后期,充分发育的网状薄膜与水泥浆体形成互穿网络结构,促进孔隙结构致密化。二者发挥协同作用,显著增强水泥砂浆力学性能。
-
关键词:
- 纳米氧化石墨烯 /
- 乙烯-醋酸乙烯酯胶粉 /
- 水泥砂浆 /
- 力学性能 /
- 孔隙结构
Abstract:In this study, nano-graphene oxide (GO) and ethylene-vinyl acetate rubber powder (EVA) were used to modify ordinary cement mortar, and the mechanism of the influence of GO and EVA on the mechanical properties of cement mortar was revealed in terms of the chemical composition, pore structure, and microscopic morphology of the materials by using testing methods such as FTIR, XRD, TG, NMR, and SEM. The results indicate that the well-dispersed GO reduces the fluidity of fresh mortar, and this effect could be mitigated by incorporating EVA. The mechanical properties of specimens containing 0.03wt% GO alone were found to be optimal, with a 24.1% increase in compressive strength and a 31% increase in flexural strength at 7 days compared to the benchmark group (PC). Subsequent to the composite infusion of GO and EVA, the 28-day mechanical properties of the resultant specimens exhibit peak values at a GO dosage of 0.03wt% and an EVA dosage of 4wt% weight percent, respectively. Notably, the compressive and flexural strengths recorded are 72 MPa and 12 MPa, demonstrating enhancements of 25.9% and 33.3% when compared to the properties of the PC specimens. The microscopic test outcomes demonstrate that: the nucleation effect of GO accelerates the cement hydration process and can modulate the generation and growth of flower-like hydration crystals, thus refining the pore size distribution of the specimen, and the good filling effect makes the pore structure become denser. The establishment of reticulation film in the early stage of EVA impedes the hydration process of the cement, and in the late stage of hydration, the fully developed reticulation film forms an interpenetrating network with the cement paste, facilitating the pore structure and densification. The cooperative interaction of the two significantly enhances the mechanical properties of the cement mortar.
-
以往研究表明,在水泥基材料中加入聚丙烯纤维[1]、钢纤维[2]或者矿物掺合料[3,4]等可以增强基体力学性能,但并未从根本上改善水泥性能。近年来,利用聚合物改性的水泥基复合材料凭借更强的柔韧性、更高的抗裂性和耐久性,进一步增强了水泥基复合材料的整体性能。Wang等[5]研究揭示了醋酸乙烯酯-聚丙烯酸酯共聚物(VA/VeoVa)出色的减水保水效果,对于改善砂浆的整体性能具有显著意义。Li等[6]认为乙烯-醋酸乙烯酯(EVA)能够改善水泥基材料的柔韧性,提高水泥基体抗渗性能。Betioli等[7]研究发现EVA在碱性pH值下会发生水解并消耗溶液中的钙离子,形成有机盐乙酸钙(Ca(CH3COO)2),从而降低基体中氢氧化钙(CH)含量。Bomediano等[8]认为EVA可以降低水泥颗粒间的摩擦力,导致水泥浆体在新鲜状态下具有更大的可塑性,从而改善新拌浆体的流动度性能。Cai等[9]认为掺入EVA后可以形成网状薄膜填充基体中微小孔隙和裂缝,促进结构致密化,提高材料的整体韧性,增强材料抗渗透性能。然而有研究表明[10],EVA等乳胶聚合物对水泥水化反应的延缓作用会导致复合材料早期力学强度较弱,且随着聚合物掺量的增加,影响加重。如何消除聚合物带来的负面效果,并通过改善水泥基材料在纳米尺度微观结构上的缺陷成为亟待解决的问题。
纳米材料可以通过控制纳米级微裂纹来改善微观结构,进而提高宏观性能。当前,纳米二氧化硅(NSiO2)[11]、纳米碳酸钙(NCaCO3)[12,13]、碳纳米管(CNTs)[14]及石墨烯等纳米材料在水泥基复合材料中的应用较为广泛。研究表明[15],由于CNTs或石墨烯等纳米材料具有较强的范德华力导致分散性能较差,需要良好的分散效果才能发挥作用。纳米氧化石墨烯(GO)是石墨烯的衍生物,具有sp2原子键构成的二维结构,这种结构赋予其优异的物理和化学性质,包括优异的杨氏模量(~
1100 GPa)、超高比表面积(~2600 m2g−1)及巨大的机械强度(~1060 GPa)。GO边缘具有大量的羧基、羰基及羟基等含氧官能团[16],它们能够在一定程度上消解GO片层之间的范德华力作用,从而改善GO在水中的分散效果[17]。适当的掺量和良好的分散效果是GO能够全面发挥优异性能的关键。GO为水泥基复合材料提供更好的成核效应和填充效应[18],促进水泥浆体的水化反应,改善水泥基体的微观结构,从而增强水泥基复合材料的宏观性能。Wang等[19]研究发现GO能有效降低水泥浆体的剪切增稠程度,加快临界剪切速率,从而提高水泥浆体的稳定性。Liu等[20]提出GO可以通过调节和填充作用改善水化产物的形态,进而提高水泥砂浆的整体密度,增强基体与骨料的界面粘结。Lv等[21]研究发现,当GO含量为0.03%时,水泥复合材料的抗拉强度(78.6%)、抗折强度(60.7%)和抗压强度(38.9%)均有显著提高。Z.Naseem等[22,23]通过多项研究认为GO纳米片可以将团聚的EVA颗粒转化为分散良好的组装体并有效防止聚合物发生引气效应,提高聚合物水泥基复合材料的致密化,增强材料力学性能。有研究表明[24],当GO掺量超过0.1%时,易导致GO片层堆积和聚集形成裂缝。综上所述,目前利用GO改性水泥基复合材料的相关研究已经取得了一定的进展,但复掺GO和EVA水泥砂浆的相关研究还较少。为此本文采用GO和EVA对水泥砂浆进行改性,尝试利用EVA改善试件韧性和GO促进水泥水化进程的特点,发挥二者协同作用,从化学组成、孔隙结构及微观形貌等方面对其作用机制进行分析。
1. 实验材料及方法
1.1 原材料
试验采用祁连山水泥有限公司生产的P·O 52.5级普通硅酸盐水泥,其主要技术指标见表1;使用厦门艾斯欧标准砂有限公司生产的中国ISO标准砂;使用河南铂润铸造材料有限公司生产的Ⅱ级FA;聚合物为Wacker公司生产的可再分散乳胶粉 VINNAPAS®
5010 N (EVA),其技术指标见表2,EVA的SEM图像如图1(a)所示,EVA为大小不规则球形块体状分布,粒径主要分布在0~250 μm之间;GO为苏州碳丰石墨烯科技有限公司生产,其技术指标见表3,GO的SEM图像如图1(b)所示,GO表现为典型的褶皱层,且未经分散的聚集片层总厚度普遍小于10 μm;减水剂为粉剂聚羧酸减水剂(PCE);消泡剂采用有机硅消泡剂;试验用水为纯水。表 1 水泥技术指标Table 1. Cement technical indicatorsStrength grade Stability Compressive strength/MPa Flexural strength/MPa Solidification time/min 3 d 28 d 3 d 28 d Condensation Congeal 52.5 Eligible 30.2 56 6.1 8.8 151 212 表 2 EVA技术指标Table 2. EVA technical indicatorsPerformances Index Solid content/% 99±1 Apparent density/(g·L−1) 540±50 Appearance White powder Stable system Polyvinyl alcohol Minimum film forming temperature/℃ 4 Main particle sizes/μm 0.5-8 1.2 配合比设计
本试验固定水胶比为0.35,胶砂比1∶1.5,粉煤灰以10wt%取代水泥。根据以往调查研究[7,25-27],GO的掺量在0.01%~0.1% (占胶凝材料质量)范围内,EVA掺量在2%~10%范围内可充分发挥其作用,因此本试验选定GO掺量为0.01wt%、0.03wt%和0.05wt%,EVA掺量为2wt%、4wt%和6wt%。PCE与GO的质量比为2∶1,以保证新拌砂浆流动度控制在180 mm左右。消泡剂仅在掺加EVA时掺入,固定掺量为0.1 g。同时制备基准组(PC)、单掺EVA试件、单掺GO试件与复掺GO和EVA试件,具体配合比如表4、5所示。
表 3 GO技术指标Table 3. GO technical indicatorsPerformances Index Fineness >95wt% Layer diameter 1-30 μm Appearance Brownish-black powder Storey 1-3 表 4 PC、单掺EVA、单掺GO试件Table 4. PC, single-doped EVA, single-doped GO specimensNumber Water-to-cement ratio FA/% GO/% EVA/% Grit ratio GO: PCE Defoamer/g PC 0.35 10 0 0 1:1.5 0 0 E1 0.35 10 0 2 1:1.5 0 0.10 E2 0.35 10 0 4 1:1.5 0 0.10 E3 0.35 10 0 6 1:1.5 0 0.10 G1 0.35 10 0.01 0 1:1.5 1:2 0 G2 0.35 10 0.03 0 1:1.5 1:2 0 G3 0.35 10 0.05 0 1:1.5 1:2 0 Notes: FA represents grade II fly ash; GO represents nano-graphene oxide; EVA stands for ethylene-vinyl acetate rubber powder; PCE is powder polycarboxylic acid water reducing agent; The same below. PC is the reference group specimen; "E1", "E2", "E3"represent the content of EVA is 2%, 4% and 6%, respectively; "G1", "G2", "G3" represent the content of GO is 0.01%, 0.03% and 0.05%, respectively. 表 5 复掺GO和EVA试件Table 5. Compound GO and EVA specimensNumber Water-to-cement ratio FA/% GO/% EVA/% Grit ratio Defoamer/g G1 E1 0.35 10 0.01 2 1:1.5 0.10 G1 E2 0.35 10 0.01 4 1:1.5 0.10 G1 E3 0.35 10 0.01 6 1:1.5 0.10 G2 E1 0.35 10 0.03 2 1:1.5 0.10 G2 E2 0.35 10 0.03 4 1:1.5 0.10 G2 E3 0.35 10 0.03 6 1:1.5 0.10 G3 E1 0.35 10 0.05 2 1:1.5 0.10 G3 E2 0.35 10 0.05 4 1:1.5 0.10 G3 E3 0.35 10 0.05 6 1:1.5 0.10 Note: "G1 E1"represents GO and EVA doping of 0.01% and 2%, respectively. 1.3 试件制备及性能测试
1.3.1 GO的分散
为保证GO良好分散,采用以下步骤:首先将GO加入到水中,使用玻璃棒搅匀,放在磁力搅拌器上机械搅拌5 min,最后放入超声波冲洗器中超声分散15 min,整个过程保持连续。复掺试件溶液配制步骤为:将EVA粉末均匀分散在水中,然后加入定量的GO和PCE搅匀,放在磁力搅拌器上机械搅拌5 min,最后放入超声波冲洗器中超声分散15 min,整个过程保持连续,如图2为分散过程示意图。由于静电相互作用,GO纳米片在聚合物介质中能够均匀分散,从而稳定其在水泥基体中的分散状态[28]。
1.3.2 试件制备
按照《聚合物改性水泥砂浆试验规程》(DL/T 5126-2021)[29]规范要求,浆体搅拌均匀后浇筑到模具中,放置在振动台上振动,确保良好的压实效果。采用保鲜膜密封模具,以防止水分挥发。24 h后样品脱模,在标准养护室内进行7 d和28 d养护后进行后续测试。
1.3.3 流动度测试
为探究不同掺量GO和EVA对新拌水泥砂浆流动性的影响,根据《水泥胶砂流动度测定方法》(GB/T 2419-2005)[30]规范要求,如图3所示采用跳桌法进行测试,每组试样进行三次重复试验取均值以确保准确性。
1.3.4 力学性能测试
力学性能试验参考《水泥胶砂强度检验方法(ISO法)》(GB/T 17671-2021)[31]规范,采用华龙仪器有限公司生产的YA-3000型微机控制恒应力压力试验机,每组试样至少进行3次重复试验。如图4所示,在加载速率为50 N/s±10 N/s的条件下进行抗折强度试验,抗压强度试验加载速率为
2400 N/s±200 N/s。1.3.5 微观结构测试
在规定龄期对净浆试件进行核磁共振测试(NMR)后,破碎试件并随机选取小于1 cm×1 cm×1 cm的碎片浸泡于无水乙醇48 h,使其停止水化,随后在40℃的真空干燥箱中干燥48 h。碎片可直接用于扫描电子显微镜测试(SEM),傅里叶变换红外光谱(FTIR)测试、X射线衍射测试(XRD)和热重分析(TG)需将碎片研磨至0.075 mm以下粉末。
化学成分使用赛默飞世尔科技公司研发的NicoletTM SummitTM FTIR光谱仪在500~
4000 cm−1范围内进行FTIR进行测试;使用德国BRUKER AXK公司型号为D8 ADVANCE的X射线粉末衍射仪进行XRD测试;采用京仪高科ZCT-B综合热分析仪进行TG分析,样品重量限制为20 mg(每个样品重量尽量保持相同),测量温度范围为20~1000 ℃,升温速率为20℃/min。孔隙结构使用NM-V型号的真空加压饱和装置进行真空加压饱水24 h后,利用苏州纽迈分析仪器股份有限公司生产的MesoMR12-060 H-I设备进行NMR表征。其中,横向弛豫时间T2用下式表示[32]:
对于水泥基材料孔隙而言,自由弛豫和扩散弛豫可以忽略不计,即式(1)可转化为
1T2 = 1T2F + 1T2E + 1T2S (1) 式中:T2为横向弛豫时间;T2F为自由弛豫时间;T2E为扩散弛豫时间;T2S为表面弛豫时间。
在研究孔径分布时,需将本研究中孔隙假设为理想球形,从而得到S和V与孔隙半径r的关系如下式所示:
1T2≈1T2S=ρSV (2) 式中:ρ为表面弛豫强度(μm/s),根据经验取值为5 μm/s[33],S为孔比表面积,V为孔隙体积。
SV=3r (3) 将式(3)代入式(2),可以得到T2与孔隙半径r的关系如下式所示:
1T2=ρSV=ρ3r (4) 使用赛默飞世尔科技公司研发的Apreo 2 S+扫描电镜观察样品的微观形貌,测试前需在样品上沉积一层薄薄的金钯层,确保样品具有导电性。
2. 结果与讨论
2.1 流动度结果与分析
根据跳桌法测定各配合比新拌浆体流动度的结果如图5所示。可以观察到,EVA的掺入改善了流动度,EVA掺量为6wt%时流动度较基准试件提升5.6%。通过加入PCE可有效改善分散良好的GO导致新拌浆体流动度降低这一现象[34],但随着GO含量的增加,整体下降趋势仍然存在。当复掺GO和EVA时,不再需要加入PCE即可使试件流动度性能保持良好。
分析可知,GO利用亲水性官能团和较大的比表面积,能有效地吸附水泥基体中的水分子[35],减少自由水的数量,进而增加水泥颗粒间的摩擦,导致试件流动度降低。当EVA与水泥颗粒接触后,会形成一层网状胶膜[36],从而减少水泥颗粒间的摩擦力,使水泥颗粒更容易分散,有效提高试件的流动度。另外,通过内掺10% FA,可使其发挥滚珠效应[37],有助于改善试件流动度。
2.2 力学性能结果与分析
在规定龄期测试得到各配合比试件的抗折、抗压强度如图6所示。在7 d龄期时,随着EVA和GO掺量的增加,抗折强度均呈现先增大后减小的趋势,即E2试件和G2试件分别为单掺最优掺量组,其抗折强度分别为8 MPa和9.3 MPa,较PC试件提升了12.7%和31.0%。而在复掺EVA和GO试件中较PC试件抗折强度分别提升了16.9%、22.5%、15.5%、19.7%、26.8%、18.3%、15.5%、19.7%、12.7%,可以发现复掺试件中也是E2与G2的组合(G2 E2组)为最优掺量组。但EVA的掺入会明显降低试件的抗压强度,最大降低幅度出现在E3试件的10.7%。单掺GO可以显著提升试件抗压强度,最优掺量组出现在G2试件,抗压强度为58.2 MPa,增长率达到24.1%。复掺试件抗压强度均稳定增长,最优掺量组为G2 E2组,抗压强度可以达到55.3 MPa,增长率为17.9%。
在28 d龄期时,抗折强度仍有明显的增长,尤其是单掺EVA组,E2试件达到10.4 MPa,单掺GO组抗折强度提升率稳定在13%~18%。32%的增长率出现在G2 E2组试件中,也是抗折强度提升最大的一组试件。抗压强度中,单掺EVA组试件较PC试件出现提高的迹象,单掺GO组试件以13%~19%的幅度继续加强,而复掺组试件较7 d龄期的增长速率也在进一步提高,最大增长率为G2 E2组试件的25.9%,抗压强度已达到72 MPa。
由力学性能试验结果可知,EVA的掺入延缓了水泥水化进程,从而对7 d龄期抗压强度产生抑制作用。而随着龄期的延长,EVA产生的网状胶膜逐渐填补孔隙,强度随之提高。GO的掺入使得试件7 d力学性能提升明显,说明适量的GO经过良好的分散后会加速浆体早期水化进程,并且GO可以使基体形成更为致密的孔隙结构,增强了水泥颗粒间的载荷传递能力[38],进而提高试件早期力学性能。而当龄期延长到28 d时GO的作用随之减弱,但通过其内部固化效应[39]为水泥基体提供额外的水分,从而可以实现长期增强的效果。过量的GO会导致团聚现象,容易产生孔隙和裂缝,从而劣化力学性能,这与此前研究结论一致[40,41]。
试件的韧性可以利用其压折比进行表征[42],根据抗压强度和抗折强度结果得出试件的压折比如图7所示。可以发现EVA的单掺和复掺组试件中压折比相较PC均有所下降,其中单掺组下降十分明显,7 d和28 d龄期下已从PC的6.6和6.4到5.6、5.6、5.5和5.9、5.8、5.9。但GO的掺入并没有使压折比明显变动,说明GO能够相对稳定的提升材料的抗折强度和抗压强度,并没有像EVA一样出现对抗折强度的提升明显优于对抗压强度的增强。EVA的加入有效降低试件压折比,提高材料的韧性,GO的掺入可以加速EVA早期延缓水化的过程,二者的叠加作用增强了试件的力学性能。
2.3 FTIR结果与分析
PC、E2、G2和G2 E2组试件养护28 d测定的FTIR如图8所示。EVA聚合物水解反应,即CH和CH3 COOH−反应生成新的化合物Ca(CH3COO)2,反映在峰
1742 cm−1处的C=O波段。峰1574 cm−1处的波段指示了羧酸阴离子(—COO−)的存在,表明EVA聚合物会发生乙酸基的碱性水解,在一定程度上阻碍水泥和水的接触,降低水泥的水化速率,从而影响EVA试件的前期力学性能。在PC和G2试样中并没有发现相关峰,表明EVA与基体之间发生了强相互作用,可以改变EVA的化学结构,所呈现的现象与前面的力学性能结论一致[43]。GO的存在促进了C-S-H的形成和生长,从而使SiO2−发生聚合,使Si-O不对称振动达到了更高的数量(~980 cm−1)和更高的峰值[44]。1420 cm−1波段为羟基—OH的拉伸振动峰,峰值1645 cm−1波段与钙矾石(AFt)的形成有关。3425 cm−1和3648 cm−1波段的峰值存在于所有试样中,该波段与CH以及C-S-H的结合水和吸收水有关。与E2试样相比,G2试件中该峰值透光率更低,而且位置发生向左移位,表明GO的成核效应会使更少的CH发生沉淀[45],这一现象在G2 E2试件中最为明显。2.4 XRD结果与分析
对PC、E2、G2和G2 E2组试件硬化水泥净浆的矿物相变化进行了表征,结果如图9所示。控制基体的主要特征峰由微量AFt、硅酸二钙/硅酸三钙(C2S/C3S)、CH和方解石(CaCO3)相组成。可以观察到,掺加GO并没有生成新的水化产物,几类试件XRD谱图基本一致,只存在峰值差异[46]。
与PC、E2组试样相比,加入GO明显降低28 d AFt的峰值,主要原因是GO的成核效应,加速了水泥水化反应,使AFt转化为AFm或其他水化产物。C2S和C3S的峰值在PC和E2组中较为突出,表明EVA起到一定的延缓水化进程的作用。在18.08°和34.12°处的CH峰值有明显差异,EVA释放的CH3COO−和部分Ca2+相互作用,形成Ca(CH3COO)2,影响了CH的生成量。由于GO的存在,G2和G2 E2组试样更多的CH被消耗,水化为有利于提高力学性能的C-S-H凝胶[23]。
2.5 TG结果与分析
采用TG和DTG可以对试样28 d龄期水化程度进行定量分析,如图10(a)、10(b)所示。此前研究表明[47],根据温度区间可以判断不同反应过程的消耗量:50~200℃为AFt相和C-S-H相结合水脱水,400~500℃为CH的分解,600~800℃为CaCO3脱碳。由TGA和DTG测试结果可知,四组试件中AFt相和C-S-H相结合水脱水的消耗占比分别为6.389%、6.569%、6.927%及7.174%,可以解释为GO有效提升水化产物的生成量,EVA也在水化中发挥一定的作用。G2 E2与G2组较PC和E2组试件CH峰更陡更延后,表明GO更有利于CH的结晶。按照CH的量表示水化进程的程度,CH的量按下式计算:
MCH=LCH×WCH/WH (5) 式中,MCH为CH的量,LCH为CH的失重率,WCH为CH的分子量,WH为H2O的分子量。
图10(c)为PC、E2、G2和G2 E2组试件养护28 d时的CH含量,可见,PC组试件CH含量为14.74%,与E2组试件相当。加入GO后能够减少到13.77%,复掺GO和EVA后仅有12.17%。EVA在碱性富钙胶凝环境中会与部分Ca2+发生反应[48],生成Ca(CH3COO)2,减少CH的生成量,但在28 d时EVA对水化进程的影响已成为积极因素。GO表面对Ca2+的吸附作用是降低CH含量的一个因素,此外GO提供了更多的成核位点,可以加速水化进程,28 d龄期时GO的促进作用已发挥到最佳,消耗大量的CH生成更多有利于提高力学性能的C-S-H,这一现象与力学性能结论一致。
2.6 NMR结果与分析
利用CPMG序列测得T2值,再利用反演软件系统得到T2分布曲线。如图11为7 d和28 d龄期时PC、E2、G2和G2E2组试件的T2谱,测试试件均呈现三个峰,每个T2谱有一个主信号峰(第一个峰)和两个次要信号峰。弛豫时间越短,说明孔隙中水的自由度越小,即该位置的孔隙尺寸越小,由此也可通过T2谱的弛豫时间反映孔隙尺寸的分布。主信号峰的信号强度和曲线下面积远大于次信号峰,这一现象直接表明所测试件的孔隙主要以微孔为主。由图11及表6可以得出,28 d较7 d龄期PC、E2、G2、G2E2组试件的峰总面积分别下降14.9%、11.6%、10.8%和22.9%。其中7 d龄期G2组“主峰”面积占比最大,达到93.29%,并且次峰2面积占比最小,只有0.51%。说明G2试件大孔数量较少,小孔数量较多,其原因为GO的成核效应促进孔隙结构的致密化。28 d龄期时E2、G2、G2E2试件的“次峰1”峰面积迅速减小,并且出现的位置向左偏移明显,但最显著的变化在于G2E2试件总峰面积为
1955.90 已低于G2试件的2019.19 。表明GO能够加速水化进程,EVA聚合物膜的充分发育也改善了微观结构,使得G2 E2试件已成为孔隙结构更为密实的配比。表 6 PC、E2、G2和G2 E2组试件不同龄期特征峰面积比Table 6. Ratio of characteristic peak area at different ages of specimens in groups PC, E2, G2 and G2 E2Age Number Total area
of peaksMain peak Sub-peak 1 Sub-peak 2 Peak area Proportion/% Peak area Proportion/% Peak area Proportion/% 7 d PC 2851.39 2622.54 91.97 178.21 6.25 50.63 1.78 7 d E2 2643.29 2395.97 90.64 197.75 7.48 49.56 1.88 7 d G2 2264.84 2112.97 93.29 140.34 6.20 11.53 0.51 7 d G2 E2 2537.79 2304.50 90.81 211.45 8.33 21.85 0.86 28 d PC 2425.77 2269.00 93.54 126.41 5.21 41.83 1.72 28 d E2 2336.80 2267.24 97.02 52.42 2.24 12.21 0.52 28 d G2 2019.19 1953.99 96.77 58.83 2.91 6.37 0.32 28 d G2 E2 1955.90 1900.81 97.18 7.33 2.42 7.76 0.40 T2谱中,各峰的位置与面积能够反映孔隙尺寸和孔隙相对数量,但无法直观对孔隙尺寸进行分类,因此可以通过T2谱得到不同孔径尺寸孔隙率图及其孔径占比图,如图12所示。根据布特对孔径的分类方法,将试件孔分为凝胶孔(<0.01 μm)、过渡孔(0.01~0.1 μm)、毛细孔(0.1~1 μm)和大孔(>1 μm)四类[49]。在图12中可知,PC、E2、G2和G2 E2组试件28 d较7 d龄期孔隙率分别下降0.9%、1.2%、0.5%、1.5%。7 d和28 d龄期时试件均以凝胶孔和过渡孔为主,大孔和毛细孔比例相对较少。由于EVA成膜效应一定程度上阻碍早期水泥水化进程,导致E2试件孔隙结构的密实度降低。GO对较大孔隙的细化效果出色,因此28 d龄期时发现掺入GO的试件大孔占比相较7 d龄期时明显减少,毛细孔比例有所提升。GO与EVA的协同作用使孔隙结构致密化,从而使得力学性能有所提升。
2.7 SEM结果与分析
G2E2试件微观形貌测试结果如图13所示,图13(a)中EVA吸附在水泥基体表面,形成一层聚合物膜,从而对水泥水化进程产生阻滞作用,导致很难观察到CH和C-S-H相。图13(b)中发育充分的EVA薄膜通过填充基体微观结构中的孔隙来提供弹性连接,从而增强试件的力学性能和韧性。
GO利用丰富的含氧官能团为水泥基体提供成核效应,促进水泥水化反应,生成规整有序的花状水化晶体[50]。花状水化晶体容易在孔洞和裂纹处生成,通过聚集生长为基体提供纳米填充效应。如图13(c)、13(d)、13(e)所示,与7 d相比,28 d龄期的试件内部花状水化晶体更加饱满,并且针棒状AFt也大量减少[51],形成有序聚集,从而填充孔洞的大部分空间,有助于提高基体密实性和均匀性,使得试件力学性能得到改善。
利用EDS测定化学元素组成结果如图14所示,可以发现,充分发育的花状水泥晶体处C元素相对较高,且Ca/Si比有所下降,表明GO的存在加速了水泥水化产物的生成并且具有调节水化产物形貌的能力。由于GO的表面活性和吸附能力,水化产物更倾向于在GO表面生长,而不是在相邻的未水化水泥颗粒处[39]。
3. 结 论
(1)分散良好的纳米氧化石墨烯(GO)凭借亲水性官能团和较大的比表面积吸附基体中的水分子,导致新拌浆体流动度下降,乙烯-醋酸乙烯酯胶粉(EVA)的加入使流动度得到改善。
(2) GO显著增强了试件的力学性能,单掺0.03wt% GO在7 d龄期时抗折、抗压强度较基准组(PC)提高了31%和24.1%。28 d龄期时复掺0.03wt% GO和4wt% EVA力学性能最优,抗折和抗压强度达到12 MPa和72 MPa,较PC试件提高了33.3%和25.9%。相比于GO,EVA明显改善了试件的韧性。
(3) FTIR、XRD和TGA测试表明,EVA早期发生水解反应产生Ca(CH3COO)2,减少了CH含量,阻碍水泥水化进程。GO的掺入并未生成新的水化产物,但通过成核效应可以加快水化速率,消耗更多的CH转化为有利于提升力学强度的C-S-H凝胶。
(4) NMR和SEM结果表明,EVA和GO在协同作用时,EVA薄膜通过填充孔隙使试件孔隙率降低,平均孔径减小,而GO可以调节花状水化晶体的形成和生长,使得水化产物数量增加,从而孔隙结构变得更加致密,力学性能得到改善。
-
表 1 水泥技术指标
Table 1 Cement technical indicators
Strength grade Stability Compressive strength/MPa Flexural strength/MPa Solidification time/min 3 d 28 d 3 d 28 d Condensation Congeal 52.5 Eligible 30.2 56 6.1 8.8 151 212 表 2 EVA技术指标
Table 2 EVA technical indicators
Performances Index Solid content/% 99±1 Apparent density/(g·L−1) 540±50 Appearance White powder Stable system Polyvinyl alcohol Minimum film forming temperature/℃ 4 Main particle sizes/μm 0.5-8 表 3 GO技术指标
Table 3 GO technical indicators
Performances Index Fineness >95wt% Layer diameter 1-30 μm Appearance Brownish-black powder Storey 1-3 表 4 PC、单掺EVA、单掺GO试件
Table 4 PC, single-doped EVA, single-doped GO specimens
Number Water-to-cement ratio FA/% GO/% EVA/% Grit ratio GO: PCE Defoamer/g PC 0.35 10 0 0 1:1.5 0 0 E1 0.35 10 0 2 1:1.5 0 0.10 E2 0.35 10 0 4 1:1.5 0 0.10 E3 0.35 10 0 6 1:1.5 0 0.10 G1 0.35 10 0.01 0 1:1.5 1:2 0 G2 0.35 10 0.03 0 1:1.5 1:2 0 G3 0.35 10 0.05 0 1:1.5 1:2 0 Notes: FA represents grade II fly ash; GO represents nano-graphene oxide; EVA stands for ethylene-vinyl acetate rubber powder; PCE is powder polycarboxylic acid water reducing agent; The same below. PC is the reference group specimen; "E1", "E2", "E3"represent the content of EVA is 2%, 4% and 6%, respectively; "G1", "G2", "G3" represent the content of GO is 0.01%, 0.03% and 0.05%, respectively. 表 5 复掺GO和EVA试件
Table 5 Compound GO and EVA specimens
Number Water-to-cement ratio FA/% GO/% EVA/% Grit ratio Defoamer/g G1 E1 0.35 10 0.01 2 1:1.5 0.10 G1 E2 0.35 10 0.01 4 1:1.5 0.10 G1 E3 0.35 10 0.01 6 1:1.5 0.10 G2 E1 0.35 10 0.03 2 1:1.5 0.10 G2 E2 0.35 10 0.03 4 1:1.5 0.10 G2 E3 0.35 10 0.03 6 1:1.5 0.10 G3 E1 0.35 10 0.05 2 1:1.5 0.10 G3 E2 0.35 10 0.05 4 1:1.5 0.10 G3 E3 0.35 10 0.05 6 1:1.5 0.10 Note: "G1 E1"represents GO and EVA doping of 0.01% and 2%, respectively. 表 6 PC、E2、G2和G2 E2组试件不同龄期特征峰面积比
Table 6 Ratio of characteristic peak area at different ages of specimens in groups PC, E2, G2 and G2 E2
Age Number Total area
of peaksMain peak Sub-peak 1 Sub-peak 2 Peak area Proportion/% Peak area Proportion/% Peak area Proportion/% 7 d PC 2851.39 2622.54 91.97 178.21 6.25 50.63 1.78 7 d E2 2643.29 2395.97 90.64 197.75 7.48 49.56 1.88 7 d G2 2264.84 2112.97 93.29 140.34 6.20 11.53 0.51 7 d G2 E2 2537.79 2304.50 90.81 211.45 8.33 21.85 0.86 28 d PC 2425.77 2269.00 93.54 126.41 5.21 41.83 1.72 28 d E2 2336.80 2267.24 97.02 52.42 2.24 12.21 0.52 28 d G2 2019.19 1953.99 96.77 58.83 2.91 6.37 0.32 28 d G2 E2 1955.90 1900.81 97.18 7.33 2.42 7.76 0.40 -
[1] DEB S, MITRA N, MAJUMDER S B, et al. Improvement in tensile and flexural ductility with the addition of different types of polypropylene fibers in cementitious composites[J]. Construction and Building Materials, 2018, 180: 405-411. DOI: 10.1016/j.conbuildmat.2018.05.280
[2] 杨久俊, 刘俊霞, 韩静宜, 等. 大流动度超高强钢纤维混凝土力学性能研究[J]. 建筑材料学报, 2010, 13(1): 1-6. DOI: 10.3969/j.issn.1007-9629.2010.01.001 YANG Jiujun, LIU Junxia, HAN Jingyi, et al. Studies on Mechanical Property of High Fluidity Steel Fiber Reinforced Ultra-high Strength Concrete[J]. Journal Of Building Materials, 2010, 13(1): 1-6(in Chinese). DOI: 10.3969/j.issn.1007-9629.2010.01.001
[3] PANDITHARADHYA B J, MULANGI R H, RAVI SHANKAR A U. Mechanical and durability studies on fly ash based fibre reinforced concrete[J/OL]. Materials Today: Proceedings, 2023.
[4] ŠOUKAL F, BOCIAN L, NOVOTNÝ R, et al. The Effects of Silica Fume and Superplasticizer Type on the Properties and Microstructure of Reactive Powder Concrete[J]. Materials, 2023, 16(20): 6670. DOI: 10.3390/ma16206670
[5] WANG R, WANG P M. Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar[J]. Construction and Building Materials, 2011, 25(11): 4210-4214. DOI: 10.1016/j.conbuildmat.2011.04.060
[6] LI H, XUE Z, LIANG H, et al. Influence of defoaming agents on mechanical performances and pore characteristics of Portland cement paste/mortar in presence of EVA dispersible powder[J]. Journal of Building Engineering, 2021, 41: 102780. DOI: 10.1016/j.jobe.2021.102780
[7] Betioli A M, Hoppe Filho J, Cincotto M A, et al. Chemical interaction between EVA and Portland cement hydration at early-age[J]. Construction and Building Materials, 2009, 23(11): 3332-3336. DOI: 10.1016/j.conbuildmat.2009.06.033
[8] Bomediano K S, Gomes C E M, Fontanini P S P. Propriedades da argamassa modificada com polímeros redispersíveis de etileno-acetato de vinila (EVA)[J]. Ambiente Construído, 2020, 20: 419-429.
[9] Cai Y, Wang P M, Zhong S Y. Influence of coagulation of polymer dispersion on the properties of polymer-modified mortar[J]. Advanced Materials Research, 2015, 1129: 162-168. DOI: 10.4028/www.scientific.net/AMR.1129.162
[10] LI H, GU L, DONG B, et al. Improvements in setting behavior and strengths of cement paste/mortar with EVA redispersible powder using C-S-Hs-PCE[J]. Construction and Building Materials, 2020, 262: 120097. DOI: 10.1016/j.conbuildmat.2020.120097
[11] 李刊, 魏智强, 乔宏霞等. 纳米SiO2改性聚合物水泥基材料性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(11): 150-159. Li Kan, WEI Zhiqiang, QIAO Hongxia, et al. Experimental Study on Property of Polymer Cement Based Composite Modified by Nano-SiO2[J]. Journal of Hunan University(Natural Sciences), 2021, 48(11): 150-159(in Chinese).
[12] ENTZ D P. Activation energies of high-volume fly ash ternary blends: Hydration and setting[J]. Cement and Concrete Composites, 2014, 53: 214-223. DOI: 10.1016/j.cemconcomp.2014.06.018
[13] SATO T, BEAUDOIN J J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J]. Advances in Cement Research, 2011, 23(1): 33-43. DOI: 10.1680/adcr.9.00016
[14] YANG H, MONASTERIO M, CUI H, et al. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 263-272. DOI: 10.1016/j.compositesa.2017.07.022
[15] HOU D. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208. DOI: 10.1016/j.carbon.2017.01.013
[16] LI Z, YOUNG R J, WANG R, et al. The role of functional groups on graphene oxide in epoxy nanocomposites[J]. Polymer, 2013, 54(21): 5821-5829. DOI: 10.1016/j.polymer.2013.08.026
[17] CHUAH S, PAN Z, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials, 2014, 73: 113-124. DOI: 10.1016/j.conbuildmat.2014.09.040
[18] YU L, BAI S, GUAN X. Effect of graphene oxide on microstructure and micromechanical property of ultra-high performance concrete[J]. Cement and Concrete Composites, 2023, 138: 104964. DOI: 10.1016/j.cemconcomp.2023.104964
[19] Wang Q, Wang J, Lv C, et al. Rheological behavior of fresh cement pastes with a graphene oxide additive[J]. New Carbon Materials, 2016, 31(6): 574-584.
[20] Liu C, Huang X, Wu Y Y, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures[J]. Construction and Building Materials, 2021, 288: 123059. DOI: 10.1016/j.conbuildmat.2021.123059
[21] LV S, MA Y, QIU C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials, 2013, 49: 121-127. DOI: 10.1016/j.conbuildmat.2013.08.022
[22] NASEEM Z, SHAMSAEI E, SAGOE-CRENTSIL K, et al. Antifoaming effect of graphene oxide nanosheets in polymer-modified cement composites for enhanced microstructure and mechanical performance[J]. Cement and Concrete Research, 2022, 158: 106843. DOI: 10.1016/j.cemconres.2022.106843
[23] NASEEM Z, SHAMSAEI E, SAGOE-CRENTSIL K, et al. Microstructural and polymer film interaction mechanisms: Insights of GO-reinforced polymer-modified cement composites[J]. Journal of Building Engineering, 2023, 80: 107962.
[24] GHOLAMPOUR A, KIAMAHALLEH M V, TRAN D N H, et al. Revealing the dependence of the physiochemical and mechanical properties of cement composites on graphene oxide concentration[J]. RSC Advances, 2017, 7(87): 55148-55156. DOI: 10.1039/C7RA10066C
[25] Zhao L, Guo X, Song L, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials, 2020, 241: 117939. DOI: 10.1016/j.conbuildmat.2019.117939
[26] Alex A G, Kedir A, Tewele T G. Review on effects of graphene oxide on mechanical and microstructure of cement-based materials[J]. Construction and Building Materials, 2022, 360: 129609. DOI: 10.1016/j.conbuildmat.2022.129609
[27] Zhang X, Du M, Fang H, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Construction and Building Materials, 2021, 299: 124290. DOI: 10.1016/j.conbuildmat.2021.124290
[28] VALLURUPALLI K, MENG W, LIU J, et al. Effect of graphene oxide on rheology, hydration and strength development of cement paste[J]. Construction and Building Materials, 2020, 265: 120311. DOI: 10.1016/j.conbuildmat.2020.120311
[29] 国家能源局. 聚合物改性水泥砂浆试验规程: DL/T 5126-2021[S]. 北京 中国电力出版社, 2021 National Energy Administration. Test code for ploymer modified cement mortar: DL/T 5126-2001 [S]. Beijing: China Electric Power Press, 2021. (in Chinese)
[30] 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419-2005[S]. 北京: 中国标准出版社, 2005. Standardization Administration of the People’s Republic of China. Test method for fludity of cement mortar: GB/T 2419-2005[S]. Beijing: China Standards Press, 2005. (in Chinese)
[31] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021. Standardization Administration of the People’s Republic of China. Test method of cement mortar strength(ISO method): GB/T 2419-2005[S]. Beijing: China Standards Press, 2021. (in Chinese)
[32] 黄观送, 苏丽, 薛翠真, 等. 基于核磁共振技术的玄武岩-聚丙烯混杂纤维增强混凝土孔隙特征分析[J/OL]. 复合材料学报, 1-17[2024-06-19]. :443/10.13801/j.cnki.fhclxb.20240520.002. HUANG Guansong, SU Li, XUE Cuizhen, et al. Analysis on pore characteristics of hybrid basalt-polypropylene fiber-reinforced concrete based on nuclear magnetic resonance technology. [J/OL]. Acta Materiae Compositae Sinica, 1-17[2024-06-19]. :443/10.13801/j.cnki.fhclxb.20240520.002. (in Chinese)
[33] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J/OL]. 复合材料学报, 1-14[2024-06-19]. :443/10.13801/j.cnki.fhclxb.20231218.006. in Chinese) ZHU Xiangchen, ZHANG Yunsheng, LIU Zhiyong, et al. Study on the evolution of pore structure of manufactured aggregate concrete under sulfate freeze-thaw based on nuclear magnetic resonance technology. [J/OL]. Acta Materiae Compositae Sinica, 1-14[2024-06-19]. 20231218.006. (in Chinese)
[34] SHANG Y, ZHANG D, YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials, 2015, 96: 20-28. DOI: 10.1016/j.conbuildmat.2015.07.181
[35] LIU J, ZHAO L, CHI L, et al. Effect of multilayer graphene oxide on the hydration and early mechanical strength of cement mortar in low temperature[J]. Construction and Building Materials, 2023, 364: 129997. DOI: 10.1016/j.conbuildmat.2022.129997
[36] WU Y, SUN Q, KONG L, et al. Properties and microstructure of polymer emulsions modified fibers reinforced cementitious composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(4): 795-802.
[37] 刘春燕. 氧化石墨烯水泥基材料性能及其应用研究 [D]. 西安: 西安建筑科技大学, 2017. LIU Chunyan. Research on properties and engineering applications of cement-based materials enhanced by graphene oxide [D]. Xian: Xi'an University of Architecture and Technology, 2017(in Chinese)
[38] LV S, HU H, ZHANG J, et al. Structure, performances, and formation mechanism of cement composites with large-scale regular microstructure by distributing uniformly few-layered graphene oxide in cement matrix[J]. Structural Concrete, 2019, 20(1): 471-482.
[39] ZHAO L, GUO X, GE C, et al. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites[J]. Construction and Building Materials, 2016, 113: 470-478. DOI: 10.1016/j.conbuildmat.2016.03.090
[40] PENG H, GE Y, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based composites[J]. Construction and Building Materials, 2019, 194: 102-109. DOI: 10.1016/j.conbuildmat.2018.10.234
[41] LEE S J, JEONG S H, KIM D U, et al. Effects of graphene oxide on pore structure and mechanical properties of cementitious composites[J]. Composite Structures, 2020, 234: 111709. DOI: 10.1016/j.compstruct.2019.111709
[42] 陈潇, 张浩宇, 霍神焕等. 壳聚糖改性地聚合物的力学及吸附性能[J]. 复合材料学报, 2019, 36(12): 2959-2967. CHEN Xiao, ZHANGHaoyu, HUO Shenhuan, et al. Mechanical and adsorption of geopolymer by chitosan[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2959-2967(in Chinese).
[43] LIANG G, NI D, LI H, et al. Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of Portland cement paste at early age[J]. Construction and Building Materials, 2021, 272: 121891. DOI: 10.1016/j.conbuildmat.2020.121891
[44] HULAGABALI M M, VESMAWALA G R, PATIL Y D. Synthesis, characterization, and application of graphene oxide and reduced graphene oxide and its influence on rheology, microstructure, and mechanical strength of cement paste[J]. Journal of Building Engineering, 2023, 71: 106586. DOI: 10.1016/j.jobe.2023.106586
[45] MOKHTAR M M, ABO-EL-ENEIN S A, HASSAAN M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Construction and Building Materials, 2017, 138: 333-339. DOI: 10.1016/j.conbuildmat.2017.02.021
[46] INDUKURI C S R, NERELLA R, MADDURU S R C. Workability, microstructure, strength properties and durability properties of graphene oxide reinforced cement paste[J]. Australian Journal of Civil Engineering, 2020, 18(1): 73-81. DOI: 10.1080/14488353.2020.1721952
[47] SHOUKRY H, KOTKATA M F, ABO-EL-ENEIN S A, et al. Thermo-physical properties of nanostructured lightweight fiber reinforced cementitious composites[J]. Construction and Building Materials, 2016, 102: 167-174. DOI: 10.1016/j.conbuildmat.2015.10.188
[48] 李少飞, 魏智强, 乔宏霞, 等. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J/OL]. 材料导报, 1-22 [2024-06-19]. :80/kcms/detail/50.1078.tb.20240614.1838.004.html. LI Shaofei, WEI Zhiqiang, QIAO Hongxia, et al. Research progress on properties of polymer cement-based composites modified by nano-graphene oxide [J/OL]. Materials Reports. 1-22[2024-06-19]. :80/kcms/detail/50.1078.tb.20240614.1838.004.html. (in Chinese)
[49] 李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J]. 复合材料学报, 2020, 37(09): 2272-2284. LI Kan , WEI Zhiqiang, QIAO Hongxia, Microstructure and properties of polymer cement-based composites modified by nano SiO2 in early age.[J]. Acta Materiae Compositae Sinica, 2020, 37(09): 2272-2284. (in Chinese)
[50] CHINTALAPUDI K, RAO PANNEM R M. Strength properties of graphene oxide cement composites[J]. Materials Today: Proceedings, 2021, 45: 3971-3975. DOI: 10.1016/j.matpr.2020.08.369
[51] SHARMA S, KOTHIYAL N C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites[J]. Construction and Building Materials, 2016, 115: 256-268. DOI: 10.1016/j.conbuildmat.2016.04.019
-
其他相关附件
-
本文图文摘要
点击下载
-
-
目的
利用纳米氧化石墨烯(GO)和乙烯-醋酸乙烯酯胶粉(EVA)对普通水泥砂浆进行改性,研究其力学性能与微观结构影响规律。
方法采用FTIR、XRD、TG、NMR及SEM等微观测试手段,揭示GO和EVA对水泥砂浆力学性能的影响机制。结果表明:分散良好的GO降低了新拌砂浆的流动度,EVA的加入改善了这一现象。GO和EVA复掺后,掺量分别控制在0.03wt%和4wt%时试件的28 d力学性能最优,抗压、抗折强度分别为72 MPa和12 MPa,较PC试件提高了25.9%和33.3%。EVA早期形成网状薄膜阻碍水泥水化进程,在水化后期,充分发育的网状薄膜与水泥浆体形成互穿网络结构,促进孔隙结构致密化。GO的成核效应加速了水泥水化进程并且可以调节花状水化晶体的产生和生长,从而细化试样孔径分布,良好的填充效应使得孔隙结构变得更加致密。
结论综上,GO显著增强了试件的力学性能,与抗压强度相比,试件的抗折强度提升更为明显。相比于GO,EVA明显改善了试件的韧性。EVA和GO协同作用时,EVA薄膜通过填充孔隙使试件孔隙率降低,平均孔径减小,而GO可以调节花状水化晶体的形成和生长,使得水化产物数量增加,从而孔隙结构变得更加致密,力学性能得到提高。
-
随着材料科学的快速发展,纳米材料和聚合物复合材料的研究为传统水泥砂浆的性能提升带来了新的选择。本文采用GO和EVA对普通水泥砂浆进行改性,利用FTIR、XRD、TG、NMR及SEM等测试手段,在材料的化学组成、孔隙结构和微观形貌等方面揭示了GO和EVA对水泥砂浆力学性能的影响机制。结果表明:分散良好的GO降低了新拌砂浆的流动度,EVA的加入改善了这一现象;单掺0.03wt% GO的试件力学性能达到最佳,7 d龄期的抗压、抗折强度较基准组(PC)试件提高了24.1%和31%。GO和EVA复掺后,掺量分别控制在0.03wt%和4wt%时试件的28 d力学性能最优,抗压、抗折强度分别为72 MPa和12 MPa,较PC试件提高了25.9%和33.3%。微观试验结果表明:GO的成核效应加速了水泥水化进程并且可以调节花状水化晶体的产生和生长,从而细化试样孔径分布,良好的填充效应使得孔隙结构变得更加致密。EVA早期形成网状薄膜阻碍水泥水化进程,在水化后期,充分发育的网状薄膜与水泥浆体形成互穿网络结构,促进孔隙结构致密化。二者发挥协同作用,显著增强水泥砂浆力学性能。
复掺试件溶液分散过程(a)、PC、E2、G2与G2E2组试件28 d T2谱(b)和28 d花状水化晶体SEM图像(c)