(B4C+CNT)/Al耐高温中子吸收材料的微观组织与力学性能

Microstructure and mechanical properties of (B4C+CNT)/Al high-temperature neutron-absorbing composite

  • 摘要: 基于传统B4C/Al中子吸收材料在高温环境下强度衰退的性能瓶颈,本研究通过粉末冶金工艺制备了(B4C+CNT)/Al复合材料,研究了体积分数分别为0vol.%、2vol.%、4vol.%的碳纳米管(CNT)对材料微观组织演变及室温和300℃力学性能的影响规律。结果表明:CNT的引入可通过晶粒细化、载荷传递及位错强化的协同作用,提升复合材料的拉伸性能,其中位错强化为主要的强化机制。在室温下,含4vol.% CNT的复合材料较未添加CNT的复合材料抗拉强度提升55.8%;在300℃高温下,含4vol.% CNT的复合材料仍保持42.5%的强度增幅,展现出优异的高温强化效果。微观结构分析表明,CNT的加入有效细化晶粒(平均晶粒尺寸从0.69 μm降至0.42 μm),且CNT与Al基体间有良好的界面结合状态,为强化机制的有效发挥提供了结构基础。本研究为开发具有耐高温特性的轻质乏燃料贮运用中子吸收材料提供了新的技术路径。

     

    Abstract: To address the bottleneck of strength degradation in traditional B4C/Al neutron-absorbing materials under high-temperature environments, this study developed (B4C+CNTs)/Al composites via a powder metallurgy process. The effects of carbon nanotube (CNTs) volume fractions (0, 2, and 4vol.%) on microstructural evolution and mechanical properties at room temperature and 300℃ were systematically investigated. The results demonstrate that CNTs incorporation synergistically enhances tensile properties through grain refinement, load transfer, and dislocation strengthening mechanisms, with dislocation strengthening being the dominant contributor. At room temperature, the composite with 4 vol.% CNTs exhibited a 55.8% increase in tensile strength compared to the CNTs-free counterpart. Remarkably, even at 300℃, the composite with 4 vol.% CNTs retained a 42.5% strength enhancement, showcasing superior high-temperature stability. Microstructural analysis revealed that CNTs refined the average grain size from 0.69 μm to 0.42 μm and formed robust interfacial bonding with the Al matrix, facilitating effective load transfer. This study provides a novel technical pathway for developing lightweight materials with high-temperature durability for spent nuclear fuel storage and transportation.

     

/

返回文章
返回