CuO/g-C3N4复合材料催化降解卡马西平的性能

Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation

  • 摘要: 本研究采用煅烧法制备了CuO/g-C3N4复合材料,利用SEM-EDS、FT-IR、XRD、XPS分析其表面形貌、晶体结构以及元素价态等特征。选择卡马西平为目标污染物,探究CuO/g-C3N4复合材料应用于类芬顿体系的催化性能。试验结果显示,当卡马西平初始浓度为20 mg/L,在Cu的复合量7%,CuO/g-C3N4投加量2 g/L,H2O2投加量147 mmol/L的条件下,卡马西平的去除率最高,约为96.59%。该类Fenton体系不受溶液pH的限制,且CuO/g-C3N4材料具有较好的稳定性,五次重复实验后卡马西平的去除率仍高达94.23%。∙OH和1O2是催化过程的主要活性物种。CuO/g-C3N4与H2O2之间的电子交换导致Cu(II)/Cu(I)氧化还原过程的持续发生,进而分解H2O2产生大量的活性基团攻击CBZ分子,促进其降解。

     

    Abstract: In this study, CuO/g-C3N4 composites were prepared by a calcination method, and were characterized by Scanning Electron Microscope (SEM)-Energy Dispersive Spectrometer (EDS), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) to analyze the surface morphology, crystal structure and valence state of CuO/g-C3N4, respectively. Carbamazepine was selected as the target pollutant to explore the catalytic performance of CuO/g-C3N4 composites in Fenton-like systems. The results show that when the initial concentration of CBZ is 20 mg/L, Cu composite amount is 7%, CuO/g-C3N4 dosage is 2 g/L and H2O2 dosage is 147 mmol/L, the removal rate of CBZ is the highest, which is about 96.59%. The Fenton-like reaction is not limited by solution pH, and the catalyst presents good stability. After five cycles, the removal rate of CBZ is still as high as 94.23%. ∙OH and 1O2 are the main active species detected in the catalytic process. The electron exchanges between CuO/g-C3N4 and H2O2 lead to the continuous occurrence of Cu (II)/Cu (I) redox process, which in turn decompose H2O2 to produce a large number of active groups to attack CBZ molecules and promote their degradation.

     

/

返回文章
返回