Loading [MathJax]/jax/output/SVG/jax.js

CuO/g-C3N4复合材料催化降解卡马西平的性能

周肖艳, 罗雪梅, 陈一夫, 刘子维, 邹长武, 黄杨

周肖艳, 罗雪梅, 陈一夫, 等. CuO/g-C3N4复合材料催化降解卡马西平的性能[J]. 复合材料学报, 2025, 42(6): 3192-3201.
引用本文: 周肖艳, 罗雪梅, 陈一夫, 等. CuO/g-C3N4复合材料催化降解卡马西平的性能[J]. 复合材料学报, 2025, 42(6): 3192-3201.
ZHOU Xiaoyan, LUO Xuemei, CHEN Yifu, et al. Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3192-3201.
Citation: ZHOU Xiaoyan, LUO Xuemei, CHEN Yifu, et al. Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3192-3201.

CuO/g-C3N4复合材料催化降解卡马西平的性能

基金项目: 四川省科技厅重点研发项目(基金号: 2023YFS0374)
详细信息
    通讯作者:

    黄杨,博士,副教授,硕士生导师,研究方向:水污染处理技术 Email:huangyang@cuit.edu.cn

  • 中图分类号: X522;TB332

Catalytic performance of CuO/g-C3N4 composites for carbamazepine degradation

Funds: Key Research and Development Project of Science and Technology Department of Sichuan Province (No.2023YFS0374)
  • 摘要:

    本研究采用煅烧法制备了CuO/g-C3N4复合材料,利用SEM-EDS、FT-IR、XRD、XPS分析其表面形貌、晶体结构以及元素价态等特征。选择卡马西平为目标污染物,探究CuO/g-C3N4复合材料应用于类芬顿体系的催化性能。试验结果显示,当卡马西平初始浓度为20 mg/L,在Cu的复合量7%,CuO/g-C3N4投加量2 g/L,H2O2投加量147 mmol/L的条件下,卡马西平的去除率最高,约为96.59%。该类Fenton体系不受溶液pH的限制,且CuO/g-C3N4材料具有较好的稳定性,五次重复实验后卡马西平的去除率仍高达94.23%。∙OH和1O2是催化过程的主要活性物种。CuO/g-C3N4与H2O2之间的电子交换导致Cu(II)/Cu(I)氧化还原过程的持续发生,进而分解H2O2产生大量的活性基团攻击CBZ分子,促进其降解。

     

    Abstract:

    In this study, CuO/g-C3N4 composites were prepared by a calcination method, and were characterized by Scanning Electron Microscope (SEM)-Energy Dispersive Spectrometer (EDS), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) to analyze the surface morphology, crystal structure and valence state of CuO/g-C3N4, respectively. Carbamazepine was selected as the target pollutant to explore the catalytic performance of CuO/g-C3N4 composites in Fenton-like systems. The results show that when the initial concentration of CBZ is 20 mg/L, Cu composite amount is 7%, CuO/g-C3N4 dosage is 2 g/L and H2O2 dosage is 147 mmol/L, the removal rate of CBZ is the highest, which is about 96.59%. The Fenton-like reaction is not limited by solution pH, and the catalyst presents good stability. After five cycles, the removal rate of CBZ is still as high as 94.23%. ∙OH and 1O2 are the main active species detected in the catalytic process. The electron exchanges between CuO/g-C3N4 and H2O2 lead to the continuous occurrence of Cu (II)/Cu (I) redox process, which in turn decompose H2O2 to produce a large number of active groups to attack CBZ molecules and promote their degradation.

     

  • PPCPs (Pharmaceuticals and Personal Care Products),即药品及个人护理用品,是水体中普遍存在的痕量有机物,与人类的生产活动密切相关。虽然PPCPs类物质在环境中检测到的浓度较低,但由于其持久性、生物累积性和远距离迁移性等特征,对生态系统和人类健康的潜在风险不容忽视[1, 2]。PPCPs种类繁多,在疾病预防与治疗等方面主要包括处方类和非处方类药品,如抗生素、β受体阻滞剂、抗癫痫药等[3]。其中,卡马西平(Carbamazepine,CBZ)是一种常见的抗癫痫和精神类药物,因其在废水中检出频率较高,是具有代表性的PPCPs类物质[4]。传统生物法对卡马西平的去除率较低[5, 6],因此开发一种经济高效的处理技术刻不容缓。

    高级氧化技术(Advance Oxidation Process,AOPs)是处理水中难降解有机污染物最具有应用前景的方法之一。其中,经典芬顿氧化法是在酸性(pH=2~4)条件下,Fe(II)催化H2O2产生羟基自由基(·OH),可将目标污染物快速分解成小分子物质,甚至达到完全矿化的目标[7]。然而,该反应过程存在pH适用范围窄、H2O2利用率低、处理含铁污泥成本高、易产生二次污染等缺点[8, 9]。因此,开发金属固体催化剂应用于非均相类芬顿反应是目前的研究热点和难点。

    以金属Fe为核心的催化剂,如零价铁/Fe3O4复合催化剂[10]、Fe3O4负载活性炭[11]、Fe-金属有机框架[12, 13]、Fe掺杂氮化碳材料等[14, 15],具有良好的稳定性和循环利用效率,并能有效提高Fenton反应速率,但该体系仍需在酸性条件下进行(pH=2~4)。以金属Cu替代Fe频繁出现在近年来的研究中。Sun等人制备Cu@SiO2催化剂活化H2O2降解多种持久性有机物,在中性条件下均能达到较好的去除和矿化效果[16]。Zhang等人合成CuCN催化剂应用于光-Fenton体系,在pH=4~8的条件下,60 min内对四环素的去除率达93.60%[17]。杨露等人设计含双功能区(零价铜(Cu0)和氧空位(OVs))的铜基催化剂,在仅投加5 mmol/L H2O2和不调节溶液pH的条件下,90 min 内土霉素的去除率便达到89.2%[18]。大量的研究结果表明,Cu0,Cu(I)和Cu(II)均可与H2O2构成类芬顿体系,且铜基催化剂具有反应速率快、pH适应范围广、矿化能力强等优点[19, 20]

    铜基催化剂常用的载体包括金属氧化物[21]、二氧化硅[22]、分子筛[23]和碳材料[24, 25]等。其中,石墨相氮化碳,简称g-C3N4,具备禁带宽度窄(约2.7 eV)、合成方法简单、物化性质稳定、环境友好等优点[26, 27]。g-C3N4结构中的C原子和N原子以sp2杂化形成高度离域的π电子共轭体系,其丰富的π电子可促进芬顿反应中的电子转移[28]。同时,高密度的N基大环单元包含六个孤立电子对,可提供更多的金属配位点作为催化活性中心[29]。因此g-C3N4被认为是极具潜力的类芬顿催化剂载体。CuO是一种带隙范围在1.3~1.6 eV的p型窄带隙半导体,与g-C3N4的能级结构匹配。二者复合形成CuO/g-C3N4异质结,不仅可提高CuO的稳定性,减少溶液中Cu(II)的溶出,同时能提高Cu的电子传递效率,优化材料的催化性能[30~32]

    基于此,本研究拟制备CuO/g-C3N4复合材料构建非均相类芬顿体系,选择卡马西平(Carbamazepine,CBZ)为处理对象,考察铜的复合量、CuO/g-C3N4投加量、双氧水投加量以及溶液pH对CBZ去除效果的影响。测试材料的稳定性和循环利用效率。结合反应动力学、自由基淬灭实验和密度泛函理论(Density Function Theory,DFT)计算,探讨催化降解机制。

    卡马西平 (Carbamazepine,CBZ)购自阿拉丁试剂(上海)有限公司,过氧化氢(H2O2,30%)、尿素(CH4N2O)、无水乙醇(C2H6O)、六水合硝酸铜(Cu(NO3)2•6H2O)、NaOH、HCl等购于成都市科隆化学品有限公司。所有实验用水均为超纯水(UPT-I-10T,四川优普)。

    g-C3N4通过煅烧法制得[33, 34]。即称取一定量的尿素置于坩埚中,在马弗炉中以550℃高温煅烧4 h后便得到淡黄色粉末状的g-C3N4样品。CuO/g-C3N4复合材料的制备方法则是将一定量的g-C3N4超声分散1 h后,加入一定量的Cu(NO3)2•6H2O再超声处理2 h。将混合液过滤,滤渣烘干、研磨后转移到坩锅中,在500℃马弗炉中焙烧4 h,便得到固体样品,表示为CuO/g-C3N4。该样品用去离子水、无水乙醇分别洗涤三次后烘干备用。调节Cu的复合量(铜元素质量占催化剂总质量的百分比),制备了复合量分别1%、3%、5%、7%的催化剂。

    将一定量的CuO/g-C3N4复合材料和 H2O2 加入100 mL、20 mg/L的CBZ溶液中,在20℃恒温条件下震荡反应,收集不同时间段的液体样品,测定CBZ浓度,考察材料的催化降解性能。将反应后的催化剂经醇洗和烘干后,进行重复实验,考察材料的稳定性和重复利用效率。

    采用自由基淬灭实验确定该类芬顿体系的活性物种。在H2O2 投加前,分别加入50 mmol/L异丙醇(IPA)、0.15 mmol/L乙二胺四乙酸二钠(EDTA-2 Na)和5 mmol/L L-组氨酸(L-His)作为∙OH、h+1O2的淬灭剂。

    CBZ浓度采用高效液相色谱(安捷伦1200型)测定。选择C18 (5 μm×4.6 mm×150 mm)柱,流动相采用甲醇/水(体积比为6∶4),设定检测波长为262 nm,流速0.8 mL/min,进样量为10 μL。采用扫描电子显微镜(Scanning Electron Microscope,SEM,日本电子 JEOL,JSM-7800F Prime 型)、能谱仪(Energy Dispersive Spectrometer,EDS,牛津仪器Ultim MAX 型) 、氮气等温吸附/脱附曲线(康塔Autosorb EVO型)、傅里叶变换红外光谱仪(Fourier Transform Infrared Spectroscopy,FT-IR,赛默飞Nicolet 670型)、X射线衍射(X-Ray Diffraction,XRD,赛默飞Smartlab 9型)、X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,XPS,赛默飞Escalab 250Xi型),对催化剂的表面形貌、孔径结构、表面官能团、晶形结构及元素价态进行分析。

    使用Materials Studio软件中的DMol3模块进行计算。选择Perdew-Burke-Ernzerhof (PBE)函数和广义梯度近似(Generalized Gradient Approximation,GGA)处理体系的交互关联能[35, 36]。采用双数值极化(DNP+)为计算机组,TS方法考虑体系中的范德华力。为了减少层间的相互作用,模型真空层设置为20 Å。所有计算使用自旋杂化,smearing使用0.005 Ha。能量收敛限制设置为1.0 × 10−5 Ha,最大应力和位移分别设置为0.002 Ha/Å和0.005 Å,混合电荷密度设置为0.2。未勾选使用COSMO。

    CuO/g-C3N4复合材料的SEM图像如图1(a)所示。从中可观察到多孔堆叠的层状结构,较蓬松,表面粗糙且有部分小粒径颗粒物,推测可能是铜的氧化物。对其所含元素及分布情况进行能谱分析,如图1(b)所示,材料中含有C、N、O、Cu等元素,且各元素分布均匀。此外,通过N2等温吸附/脱附曲线拟合可知,g-C3N4和CuO/g-C3N4的比表面积和孔容积分别为10.46 m2/g、0.028 cm3/g和26.12 m2/g、0.071 cm3/g。显著增大的比表面积和孔结构可为催化反应提供更多的电荷转移通道和活性点位。

    图  1  (a) CuO/g-C3N4材料的SEM图;(b) CuO/g-C3N4材料的EDS图
    Figure  1.  (a) Scanning Electron Microscope of CuO/g-C3N4 composites; (b) Energy Dispersive Spectrometer diagram of CuO/g-C3N4 composites

    采用FT-IR分析材料的分子结构,其结果如图2(a)所示。g-C3N4和CuO/g-C3N4的吸附峰位置基本一致,说明复合CuO对g-C3N4的分子结构没有影响。图中出现三处明显的吸收区域,其中810 cm−1的吸收峰归属于氮化碳七嗪结构的面外弯曲振动[37]1100~1700 cm−1范围的峰属于杂环芳香族C–N的伸缩振动,3000~3500 cm−1范围的峰为仲胺或伯胺的伸缩振动[38]。材料的晶体结构表征结果如图2(b)所示。g-C3N4的XRD图谱在12.8°和27.6°出现两个明显的衍射峰,分别对应石墨相氮化碳的(1 0 0)晶面和(0 0 2)晶面[39]。上述衍射峰在CuO/g-C3N4的XRD图谱上的强度变弱,特别是2θ=12.8°的衍射峰,说明CuO的引入对g-C3N4石墨层间的范德华力和π–π 堆积力有一定程度的影响。此外,在35.5°和38.7°观察到CuO的(1 1 −1)和(1 1 1)晶面(JCPDS 80-1917)[40, 41]

    图  2  (a) g-C3N4和CuO/g- C3N4的FT-IR谱图;(b) XRD谱图
    Figure  2.  (a) Fourier Transform Infrared Spectroscopy spectra; (b) X-ray Diffraction pattern of g-C3N4 and CuO/g-C3N4

    为了进一步探索材料中元素的化学价态,对CuO/g-C3N4进行XPS光谱分析。图3(a)检测到C、N、O和Cu元素信号,与制备的复合材料构成一致。在O1 s谱图中(图3(b) ),可拟合为两处特征峰,分别对应材料表面的—OH(531.5 eV)和C—O (532.7 eV)[42, 43]。从图3(c)可以看出,Cu 2p谱图在932.4 eV和934.8 eV处的峰分别归属于Cu(I)(2p 3/2轨道)和Cu(II)(2p 3/2轨道) [40, 44]。Cu(II)的强卫星峰位于941.0 eV,表明铜原子以CuO形式存在[45]

    图  3  CuO/g-C3N4的XPS谱图
    Figure  3.  X-ray Photoelectron Spectroscopy pattern of CuO/g-C3N4

    图4展示了Cu复合量对CBZ去除率的影响。从图可以看出,单独的g-C3N4材料很难催化H2O2降解CBZ,其去除率仅为24.54%,主要取决于H2O2的氧化作用。当Cu复合量由1%增加到7%时,CBZ的去除率从70.95%增加到96.59%。该结果表明g-C3N4材料中Cu含量的增加可提供更多的活性位点与H2O2反应,进而产生更多的自由基攻击CBZ分子。考虑到材料制备的可行性和经济性,Cu的最佳复合量设置为7%。

    图  4  Cu复合量对CBZ去除率的影响
    Figure  4.  The effect of Cu composite amount on the removal rate of CBZ
    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    不同CuO/g-C3N4投加量对CBZ的去除率如图5所示。当材料投加量为0时,H2O2对CBZ的氧化率为20.03%。当CuO/g-C3N4投加量由0.5 g/L增加到2 g/L,CBZ去除率由55.89%提高到96.59%。由此可见,催化剂投加量的增加能增大H2O2与Cu的接触,进而提高自由基的产生量,促进CBZ的降解[46]。当CuO/g-C3N4投加量进一步增大到3 g/L时,CBZ去除率的提升并不明显,仅为1.41%,这是因为过量的催化剂在溶液中分散不均导致利用率降低[47]。考虑到工程应用上的经济性,CuO/g-C3N4的最佳投加量确定为2 g/L。

    图  5  CuO/g-C3N4投加量对CBZ去除率的影响
    Figure  5.  The effect of CuO/g-C3N4 dosage on the removal rate of CBZ
    (Experimental condition: CBZ: 20 mg/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    H2O2的投加量对CBZ去除效果的影响如图6所示。单独的CuO/g-C3N4对CBZ的吸附能力较弱,仅为2.60%。当H2O2投加量从49 mmol/L增加到147 mmol/L时,CBZ去除率由85.65%增加到96.59%。这是由于溶液中H2O2浓度增加提高了对表面活性点位的暴露, CuO/g-C3N4活化分解H2O2产生更多的自由基用以降解CBZ。但随着H2O2投加量的进一步增加,CBZ的去除率没有显著提高,其原因可能是过多的H2O2会与自由基反应,从而造成H2O2的浪费。具体的反应方程式如下:OH+H2O2HO2+H2O,HO2+∙OHO2+H2O[48]。因此,H2O2的最佳投加量为147 mmol/L。

    图  6  H2O2投加量对CBZ去除率的影响
    Figure  6.  The effect of H2O2 dosage on the removal rate of CBZ
    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; solution pH: unadjusted; reaction time: 60 min)

    不同溶液pH条件下CuO/g-C3N4催化H2O2降解CBZ的效果如图7所示。当溶液初始pH值为2时,CBZ的去除率仅为52.38%。这是由于H2O2在极酸条件下(pH<3)稳定性较差,会被快速分解成水[49];在 pH=3~9的范围内,CBZ的去除率均在96%以上,说明该催化体系具有较好的pH适应性。

    图  7  溶液pH对CBZ去除率的影响
    Figure  7.  The effect of solution pH on the removal rate of CBZ
    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; reaction time: 60 min)

    催化剂的稳定性是评价其性能的主要指标。如图8所示,CuO/g-C3N4复合材料重复使用5次后,反应60 min后CBZ去除率仅由96.59%降低到94.23% (图8),说明该材料具有较好的稳定性。其中,CBZ去除率的降低可能与CBZ及其降解的中间产物被吸附在催化剂表面、少量Cu被浸出到溶液中等原因所导致的孔隙堵塞、活性位点和表面积下降有关。此外,检测到反应溶液中铜的浓度为0.7~4.95 μg/L,远低于欧盟发布委员会条例(EU)中规定浓度(<2 mg/L)。

    图  8  CuO/g-C3N4复合材料的稳定性
    Figure  8.  Stability of CuO/g-C3N4 composites
    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    在Cu的复合量为7%,CuO/g-C3N4投加量为2 g/L,H2O2投加量为147 mmol/L的条件下,溶液中CBZ的浓度随时间的变化如图9(a)所示。通过伪一级动力学模型的拟合,CBZ的降解速率常数为0.0053 min−1,高于已有的部分研究[50, 51]。溶液TOC的变化如图9(b)所示。TOC的初始浓度为15 mg/L,与20 mg/L CBZ溶液所对应的TOC浓度接近。在反应15 min、30 min和60 min时溶液中TOC浓度分别为9.0 mg/L、8.83 mg/L、6.96 mg/L,CBZ的矿化率约为53.66%。

    图  9  (a) CuO/g-C3N4的降解动力学曲线;(b) CuO/g-C3N4的TOC测试浓度
    Figure  9.  (a) Kinetics of CBZ degradation of CuO/g-C3N4; (b) TOC concentration of CuO/g-C3N4

    添加三种不同的自由基淬灭剂后,CBZ的去除率如图10所示。当反应体系中加入50 mmol/L异丙醇,CBZ的去除率为45.68%,说明·OH对CBZ的降解具有重要的作用。EDTA-2 Na的添加对CBZ的降解也存在一定程度的抑制作用,90 min后CBZ的去除率为84.15%。当L-组氨酸的投加浓度为5 mmol/L,CBZ的去除率由96.59%降低到56.44%,说明该系统还存在1O2的氧化作用。综上所述,·OH和1O2是CuO/g-C3N4非均相类Fenton催化体系中主要的活性物种,h+对体系贡献较少。

    图  10  CuO/g-C3N4的自由基淬灭实验
    Figure  10.  Free radical quenching experiment of CuO/g-C3N4

    CBZ和H2O2分子在CuO/g-C3N4上的最佳模拟吸附位如图11(a)和(b)所示。当仅有CBZ分子吸附时,CBZ上的酰胺基与Cu−O的距离为1.962 Å, 说明氢键的形成(图11(a))。而在CBZ水溶液中,CBZ与水分子在CuO/g-C3N4上形成竞争吸附,Cu−O优先与H2O上的氢原子结合形成氢键,键长为1.472 Å。而CBZ的酰胺基与H2O上的氧原子连接,键长为1.759 Å(图11(b))。CuO/g-C3N4上的金属氧化物更容易与极性的水分子结合,从而阻止CBZ的吸附,该结果也解释了CuO/g-C3N4对CBZ较弱的吸附能力。

    图  11  (a) CBZ (b) CBZ水溶液 (c) H2O2、CBZ水溶液在CuO/g-C3N4上的模拟吸附位图
    Figure  11.  Simulated adsorption bitmap on CuO/g-C3N4 of (a) CBZ (b) CBZ aqueous solution (c) H2O2 and CBZ aqueous solution

    H2O2投加后主要通过三个步骤激发类Fenton反应:1) H2O2将取代之前吸附的H2O而优先吸附在CuO/g-C3N4表面,其氢键键长为1.004 Å(图11(c));2) CuO/g-C3N4与H2O2发生电子交换;3) H2O2 分子O−O键长度由1.453 Å 增加到1.509 Å,O−O键电子密度降低将促进其断裂并分解产生∙OH。CuO/g-C3N4与H2O2之间的电子交换导致Cu(II)/ Cu(I)氧化还原过程的持续发生,进而分解H2O2产生大量的活性基团攻击CBZ分子,促进CBZ的降解。该催化反应过程如下[52, 53]:

    Cu(II)+H2O2Cu(I)+O2+H+
    O2+H+1O2+H2O2
    Cu(I)+H2O2Cu(II)+OH+OH

    (1)通过煅烧法制备CuO/g-C3N4复合材料,其中Cu主要以氧化铜形式存在;

    (2)以CuO/g-C3N4复合材料构建非均相类芬顿体系,对卡马西平的去除率达96.59%,∙OH和1O2是反应主要的活性物种;

    (3) CuO/g-C3N4复合材料具有较好的稳定性,重复使用5次后对CBZ的去除率仍高达94.23%。

  • 图  1   (a) CuO/g-C3N4材料的SEM图;(b) CuO/g-C3N4材料的EDS图

    Figure  1.   (a) Scanning Electron Microscope of CuO/g-C3N4 composites; (b) Energy Dispersive Spectrometer diagram of CuO/g-C3N4 composites

    图  2   (a) g-C3N4和CuO/g- C3N4的FT-IR谱图;(b) XRD谱图

    Figure  2.   (a) Fourier Transform Infrared Spectroscopy spectra; (b) X-ray Diffraction pattern of g-C3N4 and CuO/g-C3N4

    图  3   CuO/g-C3N4的XPS谱图

    Figure  3.   X-ray Photoelectron Spectroscopy pattern of CuO/g-C3N4

    图  4   Cu复合量对CBZ去除率的影响

    Figure  4.   The effect of Cu composite amount on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  5   CuO/g-C3N4投加量对CBZ去除率的影响

    Figure  5.   The effect of CuO/g-C3N4 dosage on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  6   H2O2投加量对CBZ去除率的影响

    Figure  6.   The effect of H2O2 dosage on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; solution pH: unadjusted; reaction time: 60 min)

    图  7   溶液pH对CBZ去除率的影响

    Figure  7.   The effect of solution pH on the removal rate of CBZ

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; reaction time: 60 min)

    图  8   CuO/g-C3N4复合材料的稳定性

    Figure  8.   Stability of CuO/g-C3N4 composites

    (Experimental condition: CBZ: 20 mg/L; CuO/g-C3N4 dosage: 2 g/L; H2O2 dosage: 147 mmol/L; solution pH: unadjusted; reaction time: 60 min)

    图  9   (a) CuO/g-C3N4的降解动力学曲线;(b) CuO/g-C3N4的TOC测试浓度

    Figure  9.   (a) Kinetics of CBZ degradation of CuO/g-C3N4; (b) TOC concentration of CuO/g-C3N4

    图  10   CuO/g-C3N4的自由基淬灭实验

    Figure  10.   Free radical quenching experiment of CuO/g-C3N4

    图  11   (a) CBZ (b) CBZ水溶液 (c) H2O2、CBZ水溶液在CuO/g-C3N4上的模拟吸附位图

    Figure  11.   Simulated adsorption bitmap on CuO/g-C3N4 of (a) CBZ (b) CBZ aqueous solution (c) H2O2 and CBZ aqueous solution

  • [1]

    LIU J, GE S, SHAO P, et al. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China[J]. Chemosphere, 2023, 339: 139644. DOI: 10.1016/j.chemosphere.2023.139644

    [2]

    HUANG C, JIN B, HAN M, et al. The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources[J]. Journal of Hazardous Materials Letters, 2021, 2: 100026. DOI: 10.1016/j.hazl.2021.100026

    [3]

    IMWENE K O, NGUMBA E, KAIRIGO P K. Emerging technologies for enhanced removal of residual antibiotics from source-separated urine and wastewaters: A review[J]. Journal of Environmental Management, 2022.

    [4] 谢咏柳, 黄河, 赵志伟, 等. 真空紫外/氯高级氧化法去除水中卡马西平试验研究[J]. 土木与环境工程学报, 2022, 44(3): 133-140.

    XIE Y L, HUANG J, ZHAO Z W, et al. Study on removal of carbamazepine from water by vacuum ultraviolet/chlorine advanced oxidation[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 133-140(in Chinese).

    [5] 陈爱侠, 田铮, 卫潇, 等. 一步法制备磁性多孔碳及高效吸附卡马西平[J]. 中国环境科学, 2022, 42(4): 1714-1725. DOI: 10.3969/j.issn.1000-6923.2022.04.026

    CHEN A X, TIAN Z, WEI X, et al. One step preparation of biomass based magnetic porous carbon and efficient adsorption of CBZ[J]. Chinese Environmental Science, 2022, 42(4): 1714-1725(in Chinese). DOI: 10.3969/j.issn.1000-6923.2022.04.026

    [6] 魏永, 郭子寅, 袁学锋, 等. Bi-SnO2电催化膜的制备及对饮用水中卡马西平的强化去除[J]. 中国环境科学, 2024, 44(5): 2543-2553. DOI: 10.3969/j.issn.1000-6923.2024.05.017

    WEI Y, GUO Z Y, YUAN X F, et al. Fabrication of Bi-SnO2 electro-catalytic membrane for enhanced removal of carbamazepine in drinking water[J]. Chinese Environmental Science, 2024, 44(5): 2543-2553(in Chinese). DOI: 10.3969/j.issn.1000-6923.2024.05.017

    [7] 石建惠, 石家汀, 蒲凯凯, 等. 原位产过氧化氢光芬顿体系g-C3N4/CQDs/Fe2+对土霉素的降解: 机制、降解路径和毒性变化分析[J]. 复合材料学报, 2024, 41(5): 2520-2533.

    SHI J H, SHI J T, PU K K, et al. Degradation of oxytetracycline by photo-Fenton system g-C3N4/CQDs/Fe2+ in situ-hydrogen peroxide production: mechanism, degradation pathway and toxicity analysis[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2520-2533 (in Chinese).

    [8] 马泽浩, 董文强, 夏琦兴. 基于零价金属材料的类芬顿氧化技术研究进展[J]. 环境化学, 2023, 42(11): 3976-3985. DOI: 10.7524/j.issn.0254-6108.2022122003

    MA Z H, DONG W Q, XIA Q X. Research progress of Fenton-like oxidation processes based on zero valent metal materials[J]. Environmental Chemistry, 2023, 42(11): 3976-3985 (in Chinese). DOI: 10.7524/j.issn.0254-6108.2022122003

    [9] 陈洪雪, 张智慧, 白成英, 等. 高级氧化技术降解四环素类抗生素的研究进展 [J/OL]. 精细化工, 2024, 1-17.

    CHEN H X, ZHANG Z H, BAI C Y, et al. Research progress on the degradation of tetracycline antibiotics by advanced oxidation technology [J/OL]. Fine Chemicals, 2024, 1-17 (in Chinese).

    [10]

    BOUTEMEDJET A, DJERAD S, TIFOUTI L, et al. Effect of Fe0 content on the effectiveness of Fe0/Fe3O4 catalyst in Fenton process[J]. Journal of Water Process Engineering, 2021, 41: 2214-7144.

    [11]

    DUAN Z H, ZHANG W H, LU M W, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol[J]. Carbon, 2020, 107: 351-363.

    [12]

    YANG T Y, YU D Y, WANG D, at al. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs[J]. Applied Catalysis B: Environmental, 2021, 286: 0926-3373.

    [13]

    YANG R X, PENG Q H, YU B, et al. Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal[J]. Separation and Purification Technology, 2021, 267: 1383-5866.

    [14]

    MIAO W, LIU Y, CHEN X Y, et al. Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities[J]. Carbon, 2020, 159: 0008-6223.

    [15]

    HUANG Y, LUO X, DU Y N, et al. The role of iron-doped g-C3N4 heterogeneous catalysts in Fenton-like process investigated by experiment and theoretical simulation[J]. Chemical Engineering Journal, 2022, 446(Part 3): 1385-8947.

    [16]

    SUN Y, TIAN P F, DING D D, et al. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction[J]. Applied Catalysis B: Environmental, 2019, 258: 0926-3373.

    [17]

    ZHANG X, XU B K, WANG S W, et al. High-density dispersion of CuNx sites for H2O2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation[J]. Journal of Hazardous Materials, 2022, 423: 0304-3894.

    [18] 杨露. 含双功能区的铜基催化剂应用于类芬顿降解水体中土霉素的行为机制研究 [D]. 湖南大学, 2023.

    YANG L. Study on the behavior mechanism of Fenton-like degradation of oxytetracycline in water using Cupric based catalysts containing double functional regions [D]. Hunan University, 2023(in Chinese).

    [19]

    SILVA M, BALTRUS J P, WILLIAMS C, et al. Heterogeneous photo-Fenton-like degradation of emerging pharmaceutical contaminants in wastewater using Cu-doped MgO nanoparticles[J]. Applied Catalysis A: General, 2022, 630: 118468. DOI: 10.1016/j.apcata.2021.118468

    [20]

    NICHELA D A, BERKOVIC A M, COSTANTE M R, et al. Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)and Fe(III) based systems[J]. Chemical Engineering Journal, 2013, 228: 1148-1157. DOI: 10.1016/j.cej.2013.05.002

    [21]

    LI L F, HU C, ZHANG L L, et al. More octahedral Cu+ and surface acid sites in uniformly porous Cu-Al2O3 for enhanced Fenton catalytic performances[J]. Journal of Hazardous Materials, 2021, 406: 0304-3894.

    [22]

    XIANG M H, HUANG M F, LI H, et al. Nanoscale zero-valent iron/cobalt@mesoporous hydrated silica core-shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal, 2021, 417: 1385-8947.

    [23]

    HU H T, MIAO K K, XIAO L L, et al. Efficient Fenton-like treatment of high-concentration chlorophenol wastewater catalysed by Cu-Doped SBA-15 mesoporous silica[J]. Journal of Cleaner Production, 2021, 318: 0959-6526.

    [24]

    LIU C H, HE D Y, YANG H, et al. Selective generation of H2O2 by Cu-modified graphitic carbon nitride for rapid water disinfection via intracellular Fenton reaction[J]. Chemical Engineering Journal, 2023, 477: 1385-8947.

    [25]

    SONG H, GUAN Z Y, XIA D S, et al. Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate[J]. Separation and Purification Technology, 2021, 257: 1383-5866.

    [26]

    ZHU J N, ZHU X Q, CHENG F F, et al. Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2019, 256: 0926-3373.

    [27] 陈杨林. 改性石墨相氮化碳的制备及光催化分解水制氢性能研究 [D]. 黑龙江: 哈尔滨工业大学, 2022.

    CHEN Y L. Preparation of modified graphite phase carbon nitride and study on photocatalytic water decomposition to produce hydrogen [D]. Heilongjiang: Harbin Institute of Technology, 2022(in Chinese).

    [28] 马香港, 丁远, 张俊格, 等. 改性g-C3N4光催化降解双酚A的研究进展 [J/OL]. 化工进展, 2024, 1-26.

    MA X G, DING Y, ZHANG J G, et al. Research progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J/OL]. Chemical Industry and Engineering Progress, 2024, 1-26(in Chinese).

    [29] 鹿宇, 刘成宝, 郑磊之, 等. 石墨相氮化碳基材料的缺陷调控策略及其光催化性能研究进展 [J/OL]. 复合材料学报, 2024, 1-19.

    LU Y, LIU C B, ZHENG L Z, et al. Research progress on defect control strategies and photocatalytic properties of graphitic carbon nitride-based materials [J/OL]. Acta Materiae Compositae Sinica, 2024, 1-19(in Chinese).

    [30]

    TONDA S, KUMAR S, KANDULA S, et al. Fe doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. Journal of Materials Chemistry A, 2014, 2(19): 6772-6780. DOI: 10.1039/c3ta15358d

    [31]

    ZUO S Y, GUAN Z Y, XIA D S, et al. Polarized heterogeneous CuO-CN for peroxymonosulfate nonradical activation: An enhancement mechanism of mediated electron transfer[J]. Chemical Engineering Journal, 2021, 420: 1385-8947.

    [32]

    WANG S N, YUAN C, CHEN W, et al. 3D spherical CuO@g-C3N4 composites activating peroxymonosulfate for high efficient degradation of 2, 4, 6-trichlorophenol: The mechanism of 1O2 generation[J]. Chemical Engineering Journal, 2024, 480: 1385-8947.

    [33] 郝彩红, 杨泽鹏, 常青, 等. 碳点/g-C3N4复合催化剂的制备及其光催化性能[J]. 复合材料学报, 2023, 40(10): 5811-5819(in Chinese).

    HAO C H, YANG Z P, CHANG Qing, et al. Preparation of carbon point/g-C3N4 composite catalyst and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819(in Chinese).

    [34] 肖自胜, 李金玲, 陈伊睿, 等. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成 2, 4, 4, 4-四氯丁腈 [J/OL][J]. 化工进展, 2023, 1-10: 1000-6613.

    XIAO Z S, LI J L, CHEN Y R, et al. g-C3N4-anchored Cu (I) catalyzed the highly selective synthesis of 2, 4, 4, 4-tetrachloronitrile from CCl4 [J/OL][J]. Chemical Industry and Engineering Progress, 2023, 1-10: 1000-6613(in Chinese).

    [35]

    FANG Z Y, BAI Y J. LI L H, et al. In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution[J]. Nano Energy, 2020, 75: 104865. DOI: 10.1016/j.nanoen.2020.104865

    [36] 刘练练. 氮化碳基光催化剂的精准设计制备及过氧化氢的绿色合成 [D]. 中国科学技术大学, 2023.

    LIU L L. Precise Design and Synthesis of Carbon Nitride-Based Photocatalysts for Green Production of Hydrogen Peroxide [D]. Anhui: University of Science and Technology of China, 2023(in Chinese).

    [37] 孙丹卉. 金属/石墨相氮化碳光催化氧化硫醚和醇类化合物的研究 [D]. 内蒙古: 内蒙古民族大学, 2021.

    SUN D H. Study on photocatalysis of thioether and alcohols by carbon nitride in metal/graphite phase [D]. Inner Mongolia: Inner Mongolia Minzu University, 2021(in Chinese).

    [38]

    SYAL B, KUMAR P, GUPTA P. Recent Advancements in the Preparation and Application of Copper Single-Atom Catalysts[J]. 2023, 392: 122261.

    [39]

    HE F, WANG Z, LI Y, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental, 2020, 269: 118828. DOI: 10.1016/j.apcatb.2020.118828

    [40] 秦志才. 铜基氮化碳催化剂的制备及其催化氧化降解木质素的性能研究 [D]. 广东: 华南理工大学, 2021.

    QIN Z C. Preparation of copper-based carbon nitride catalyst and its catalytic oxidation and degradation of lignin [D]. Guangdong: South China University of Technology, 2021(in Chinese).

    [41] 王伟康. 氮化碳及金属氧化物光催化剂的制备及其合成氨性能研究 [D]. 安徽: 中国科学技术大学, 2021.

    WANG W K. Preparation of carbon nitride and metal oxide photocatalysts and their properties for ammonia synthesis [D]. Anhui: University of Science and Technology of China, 2021(in Chinese).

    [42] 魏仕恺, 曲雅涵, 刁刘祥, 等. 碳纤维负载氧化铜催化剂制备与合成对氨基苯酚特性研究[J]. 当代化工研究, 2023, 11: 93-95.

    WEI S K, QU Y H, DIAO L X, et al. Study on preparation and synthesis of P-aminophenol by carbon fiber supported copper oxide catalyst[J]. Modern Chemical Research, 2023, 11: 93-95(in Chinese).

    [43]

    YAO Z Y, ZHU G X, LU T L, et al. Synergistically homogeneous-heterogeneous Fenton catalysis of trace copper ion and g-C3N4 for degradation of organic pollutants[J]. Water Science and Technology, 2021, 84(5): 1090-1102. DOI: 10.2166/wst.2021.296

    [44] 秦琅琅. 铜基催化剂的制备及其电化学还原CO2制乙烯的研究 [D]. 太原理工大学, 2023.

    QIN L L. Preparation of Copper based Catalysts and Study on Electrochemical Reduction of CO2 to Ethylene [D]. Shanxi: Taiyuan University of Technology, 2023(in Chinese).

    [45]

    TANG Z M, JIANG S T, WANG Y D, et al. Copper Peroxide Coated Mesoporous Silica Nanoparticles for Tumor Treatment by the Combination of Chemodynamic Therapy and Chemotherapy[J]. 2023, 37: 21.

    [46] 刘丹. 碳材料负载过渡金属催化剂应用于水中微污染物的催化降解研究 [D]. 浙江: 浙江师范大学, 2023.

    LIU D. Study on the catalytic degradation of micropollutants in water using carbon supported transition metal catalysts [D]. Zhejiang: Zhejiang Normal University, 2023(in Chinese).

    [47] 翁梦婷. 基于铁掺杂氮化碳复合材料活化过硫酸盐降解四环素的研究: 效能、理论计算及降解机制 [D]. 浙江: 浙江工商大学, 2022.

    WENG M T. Degradation of tetracycline by persulfate activation based on iron-doped carbon nitride composites: efficiency, theoretical calculation and degradation mechanism [D]. Zhejiang: Zhejiang Gongshang University, 2022(in Chinese).

    [48]

    LI N, HE X, YE J, et al. H2O2 activation and contaminants removal in heterogeneous Fenton-like systems[J]. Journal of Hazardous Materials, 2023.

    [49] 杨林海. 铜掺杂氮化碳材料的制备及其类Fenton降解污染物的性能研究 [D]. 甘肃: 兰州交通大学, 2022.

    YANG L H. Preparation of Copper-doped carbon nitride materials and their Fenton-like degradation properties [D]. Gansu: Lanzhou Jiaotong University, 2022(in Chinese).

    [50]

    CONSTANTIN M A, CHIRIAC F L, GHEORGHE S, et al. Degradation of Carbamazepine from Aqueous Solutions via TiO2-Assisted Photo Catalyze[J]. Toxics, 2022, 10(4): 168. DOI: 10.3390/toxics10040168

    [51]

    LUO H, LIU C, CHENG Y, et al. Fe (III) greatly promotes peroxymonosulfate activation by WS2 for efficient carbamazepine degradation and Escherichia coli disinfection[J]. Science of The Total Environment, 2021, 787: 147724. DOI: 10.1016/j.scitotenv.2021.147724

    [52]

    TENG C, ZHOU K, LIAO L, et al. Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater[J]. Science of The Total Environment, 2022, 838: 156462. DOI: 10.1016/j.scitotenv.2022.156462

    [53]

    LI J, PHAM A N, DAI R, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites[J]. Journal of Hazardous Materials, 2020, 392: 122261. DOI: 10.1016/j.jhazmat.2020.122261

  • 其他相关附件

  • 目的 

    PPCPs(Pharmaceuticals and Personal Care Products),即药品及个人护理用品,由于其持久性、生物累积性和远距离迁移性等特征,对生态系统和人类健康的潜在风险不容忽视。卡马西平(Carbamazepine,CBZ)是一种常见的抗癫痫和精神类药物,因其在废水中检出频率较高,是具有代表性的PPCPs类物质。传统生物法对卡马西平的去除率较低,因此开发一种经济高效的处理技术刻不容缓。本研究拟制备CuO/g-CN复合材料构建非均相类芬顿体系,选择卡马西平(Carbamazepine,CBZ)为处理对象,考察CuO/g-CN对CBZ去除效果,探讨催化降解机理。

    方法 

    ①催化实验

    方法 

    将一定量的CuO/g-CN复合材料和 HO 加入100 mL、20 mg/L的CBZ溶液中,在20 ℃恒温条件下震荡反应,收集不同时间段的液体样品,测定CBZ浓度,考察材料的催化降解性能。将反应后的催化剂经醇洗和烘干后,进行重复实验,考察材料的稳定性和重复利用效率;②自由基猝灭实验

    方法 

    采用自由基淬灭实验确定该类芬顿体系的活性物种。在HO 投加前,分别加入50 mmol/L异丙醇(IPA)、0.15 mmol/L乙二胺四乙酸二钠(EDTA-2Na)和5 mmol/L L-组氨酸(L-His)作为∙OH、h和O的淬灭剂;③材料表征

    方法 

    采用扫描电子显微镜(Scanning Electron Microscope,SEM)、能谱仪(Energy Dispersive Spectrometer,EDS) 、氮气等温吸附/脱附曲线、傅里叶变换红外光谱仪(Fourier Transform Infrared Spectroscopy)、X射线衍射(X-Ray Diffraction,XRD)、X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,XPS),对催化剂的表面形貌、孔径结构、表面官能团、晶形结构及元素价态进行分析。

    结果 

    (1) 材料的表征分析可以得出:①SEM-EDS表征发现CuO/g-CN复合材料中含有C、N、O、Cu等元素,且各元素分布均匀。②N等温吸附/脱附曲线拟合可知,较复合前,CuO/g-CN比表面积和孔容积显著增大。③XRD 和XPS表征得出CuO与 g-CN成功复合,且二者之间形成异质结,存在较强的相互作用。(2 )材料的催化降解效能实验可以得出:①当卡马西平初始浓度为20 mg/L,在Cu的复合量7%,CuO/g-CN投加量2 g/L,HO投加量147 mmol/L的条件下,卡马西平的去除率最高,约为96.59%。②该类Fenton体系不受溶液pH的限制,且CuO/g-CN材料具有较好的稳定性,五次重复实验后卡马西平的去除率仍高达94.23%。(3) 材料的催化降解机理研究可以得出:①通过伪一级动力学模型的拟合,CBZ的降解速率常数为0.0053 min。②CuO/g-CN复合材料对CBZ的矿化率约为53.66%。③·OH和O是CuO/g-CN非均相类Fenton催化体系中主要的活性物种。④HO投加后主要通过三个步骤激发类Fenton反应:1) HO将取代之前吸附的HO而优先吸附在CuO/g-CN表面,其氢键键长为1.004 ;2) CuO/g-CN与HO发生电子交换;3) HO 分子O−O键长度由1.453 增加到1.509 ,O−O键电子密度降低将促进其断裂并分解产生∙OH。CuO/g-CN与HO之间的电子交换导致Cu(II)/ Cu(I)氧化还原过程的持续发生,进而分解HO产生大量的活性基团攻击CBZ分子,促进CBZ的降解。

    结论 

    (1) 通过煅烧法制备CuO/g-CN复合材料,其中Cu主要以氧化铜形式存在;(2) 以CuO/g-CN复合材料构建非均相类芬顿体系,对卡马西平的去除率达96.59%,∙OH和O是反应主要的活性物种;(3) CuO/g-CN复合材料具有较好的稳定性,重复使用5次后对CBZ的去除率仍高达94.23%。

  • 卡马西平(Carbamazepine,CBZ)是一种常见的抗癫痫和精神类药物,也是具有代表性的PPCPs类物质。传统生物法对卡马西平的去除率很低,因此开发一种经济高效的处理技术刻不容缓。类石墨相氮化碳(g-C3N4)具有禁带宽度窄、合成方法简单、物化性质稳定、环境友好等优点,是极具潜力的类芬顿催化剂载体。CuO是一种带隙范围在1.3~1.6 eV的p型窄带隙半导体,与g-C3N4复合形成CuO/g-C3N4异质结,不仅可提高CuO的稳定性,减少溶液中Cu(II)的溶出,同时能提高Cu的电子传递效率,优化材料的催化性能。

    本研究以CuO/g-C3N4复合材料构建非均相类芬顿体系,选择卡马西平(Carbamazepine,CBZ)为处理对象。结合反应动力学、自由基猝灭和密度泛函理论(Density Function Theory,DFT)计算,探讨其催化降解机制。试验结果显示,当卡马西平初始浓度为20 mg/L,在Cu的复合量为7%,CuO/g-C3N4投加量2 g/L,H2O2投加量147 mmol/L的条件下,卡马西平的去除率最高,约为96.59%。∙OH和1O2是催化过程的主要活性物种。该类Fenton反应不受溶液pH的限制且CuO/g-C3N4材料具有较高的稳定性。CuO/g-C3N4与H2O2之间的电子交换导致Cu(II)/Cu(I)氧化还原过程的持续发生,进而分解H2O2产生大量的活性基团攻击CBZ分子,促进CBZ的降解。本研究结果将为水中药品及个人护理品(PPCPs)的去除与控制、水质安全保障提供理论依据和技术支撑。

    (a) CuO/g-C3N4复合材料催化H2O2降解CBZ的稳定性测试结果 (b) H2O2、CBZ水溶液在CuO/g-C3N4上的模拟吸附位图

    (a) Stability of CuO/g-C3N4 composites to catalyze H2O2 for degradation of CBZ; (b) Simulated adsorption bitmap on CuO/g-C3N4 of H2O2 and CBZ aqueous solution

图(11)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  78
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-07-25
  • 录用日期:  2024-08-03
  • 网络出版日期:  2024-08-23
  • 刊出日期:  2025-06-14

目录

/

返回文章
返回