Radar-IR dual band compatible carbon fiber/aluminum powder/modified ethylene propylene diene composite coating
-
摘要: 多波段兼容的复合涂层材料在军民融合领域需求迫切,是目前的研究热点。涂料粘结剂是影响涂层力学性能、红外性能和介电性能的重要组分,然而大部分有机粘结剂红外发射率较高,添加低发射率填料后往往无法协调力学性能、红外隐身和雷达透波性能之间的矛盾。以丙烯酸(AA)、马来酸酐(MAH)为改性单体对三元乙丙粘结剂进行接枝改性,以改性前后的三元乙丙为粘结剂,以漂浮性铝粉和短切抗静电碳纤维为填料,制备了具有低红外发射率和低介电损耗特性的复合涂层。系统研究了改性单体种类、用量对粘结剂本身及对添加填料的复合涂层性能的影响规律。研究结果表明:随着改性单体含量的增加,复合涂层的红外发射率略有提高,而雷达透波性能基本维持不变。粘结剂的接枝改性改善了填料和粘结剂之间的相容性、润湿性和界面结合,显著提高了复合涂层的力学性能,通过适当的接枝改性,复合涂层的拉伸强度(σb)和断裂伸长率(e)分别可提高32%和18%。分析了引入极性单体对复合涂层介电常数和损耗的影响及对填料与树脂相容性的影响。Abstract: Multi-band compatible composite coating materials are in urgent demand in the field of civil-military integration and are a current research hotspot. Coating binder is an important component affecting the mechanical, infrared and dielectric properties of coatings. However, most organic binders have high infrared emissivity, and the low emissivity fillers often fail to harmonize the contradiction between mechanical properties, infrared stealth and radar transmittance properties. A composite coating with low infrared emissivity and low dielectric loss characteristics was prepared by modifying ethylene propylene diene (EPDM) binder with acrylic acid (AA) and maleic anhydride (MAH) as grafting monomers, and using EPDM rubber as binder before and after modification, floating aluminum powder and short-cut antistatic carbon fiber as fillers. The influence laws of modified monomer type and dosage on the binder itself and on the performance of the composite coating with added filler were systematically investigated. The results show that the infrared emissivity of the composite coatings slightly increases with the increase of the content of grafted monomers, while the radar transmittance properties remain basically unchanged. The graft modification of the binder improves the compatibility, wettability and interfacial bonding between the filler and binder, which significantly improves the mechanical and comprehensive properties of the composite coating. The tensile strength (σb) and elongation at break (e) of the composite coating can be increased by 32% and 18%, respectively, by appropriate graft modification. The mechanism of the effect of AA and MAH graft modification on the coating properties was revealed from the aspects of polarity, branching and cross-linking.
-
Key words:
- composite coating /
- infrared stealth /
- infrared emissivity /
- wave-transmission /
- dielectric /
- carbon fiber /
- radar
-
表 1 样品编号和单体用量
Table 1. Samples and the dosage of monomers
Sample Dosage of AA/g Dosage of MAH/g EPDM-g-AA1 0.5 0 EPDM-g-AA2 1.0 0 EPDM-g-AA3 1.5 0 EPDM-g-AA4 2.0 0 EPDM-g-MAH1 0 0.5 EPDM-g-MAH2 0 1.0 EPDM-g-MAH3 0 1.5 EPDM-g-MAH4 0 2.0 Notes: EPDM—Ethylene propylene diene; AA—Acrylic acid; MAH—Maleic anhydride. -
[1] 张明习, 轩立新. 高性能雷达罩设计与制造关键技术分析[J]. 航空科学技术, 2015, 26(8): 13-18.ZHANG Mingxi, XUAN Lixin. The key technologies in designing and fabricating high performance radome[J]. Aeronautical Science & Technology, 2015, 26 (8): 13-18(in Chinese). [2] 许群, 张明习. 雷达天线罩电性能测试技术 [M]. 北京: 航空工业出版社, 2021: 1-10.XU Qun, ZHANG Mingxi. Radome electrical performance testing techniques [M]. Beijing: Aviation Industry Press, 2021: 1-10(in Chinese). [3] 门薇薇, 王志强, 轩立新. 隐身雷达罩技术研究进展综述[J]. 现代雷达, 2017, 39(10): 60-66.MEN Weiwei, WANG Zhiqiang, XUAN Lixin. Review of radome stealth technology[J]. Modern Radar, 2017, 39(10): 60-66(in Chinese). [4] 孟季茹, 梁国正, 秦华宇, 等. 机载雷达罩涂层的研究概况[J]. 材料导报, 2000(2): 51-52. doi: 10.3321/j.issn:1005-023X.2000.02.019MENG Jiru, LIANG Guozheng, QIN Huayu, et al. Research on coating system for radome[J]. Materials Reports, 2000(2): 51-52(in Chinese). doi: 10.3321/j.issn:1005-023X.2000.02.019 [5] 包宁, 林彬. 天线罩表面涂层的研究[J]. 弹箭与制导学报, 2004(S9): 553-554, 557.BAO Ning, LIN Bin. Investigation on surface coating of radome[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004(S9): 553-554, 557(in Chinese). [6] 陈翔. 红外低发射率涂料制备及应用研究 [D]. 厦门: 厦门大学, 2019.CHEN Xiang. Research on preparation and application of low infrared emissivity coatings [D]. Xiamen: Xiamen University, 2019(in Chinese). [7] 齐伦. 耐高温红外低发射率涂层材料设计研究[D]. 成都: 电子科技大学, 2022.QI Lun. Research on the design of high-temperature resistant coating materials with low infrared emissivity[D]. Chengdu: University of Electronic Science and Technology of China, 2022(in Chinese). [8] ZHANG W G, MA Z W, LYU D D, et al. An ultra-low infrared emissivity composite coating with outstanding mechanical properties and salt water resistance[J]. Infrared Physics & Technology, 2022, 126: 104351. [9] WANG Y Y, YU M J, GAO Y X, et al. Three-layer composite coatings with compatibility of low infrared emissivity and high wave transmittance[J]. Journal of Alloys and Compounds, 2023, 943: 169038. doi: 10.1016/j.jallcom.2023.169038 [10] WANG Y J, ZHOU H P, GAO Y X, et al. Low-infrared-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121: 104025. [11] 陈帅. 含平行排列片状金属粒子红外低发射率涂层发射率建模[D]. 成都: 电子科技大学, 2015.CHEN Shuai. Modeling emissivity of infrared low emissivity coating containing horizontally oriented metallic flake particles[D]. Chengdu: University of Electronic Science and Technology of China, 2015(in Chinese). [12] 何贺贺. 基于吸波材料和超材料的雷达-红外兼容隐身技术研究[D]. 合肥: 合肥工业大学, 2022.HE Hehe. Research of radar-infrared compatible stealth technology based on absorbing material and metamaterial[D]. Hefei: Hefei University of Technology, 2022(in Chinese). [13] DUAN Y P, WANG M, CHEN W, et al. Layered metamaterials with Sierpinski triangular fractal metasurface: Compatible stealth for S-band radar and infrared[J]. Materials Today Physics, 2023, 38: 101210. doi: 10.1016/j.mtphys.2023.101210 [14] ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology, 2023, 146: 10-18. [15] YUAN L, WENG X, DENG L. Influence of binder viscosity on the control of infrared emissivity in low emissivity coating[J]. Infrared Physics & Technology, 2013, 56: 25-29. [16] WANG Y, ZHOU H, GAO Y, et al. Low-infra red-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121: 10425. [17] SUN K, ZHANG D, YIN H, et al. Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer[J]. Applied Surface Science, 2022, 578: 152051. [18] LEONE G, ZANCHIN G, DI GIROLAMO R, et al. Semibatch terpolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene: Heterogeneous high-ethylene EPDM thermoplastic elastomers[J]. Macromolecules, 2020, 53(14): 5881-5894. doi: 10.1021/acs.macromol.0c01123 [19] 张伟钢, 陈昭, 薛连海. 酸蚀Al粉对Al-聚氨酯复合涂层光泽度与红外发射率的影响[J]. 复合材料学报, 2017, 34(10): 2182-2186.ZHANG Weigang, CHEN Zhao, XUE Lianhai. Effects of acid-etched Al powders on glossiness and infrared emissivity of Al-polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2182-2186(in Chinese). [20] 张伟钢, 薛连海, 刘羽熙, 等. 耐温型近红外低反射与8~14 μm低发射率兼容涂层的制备及性能表征[J]. 复合材料学报, 2017, 34(3): 508-514.ZHANG Weigang, XUE Lianhai, LIU Yuxi, et al. Preparation and property characterization of heat resistant low near-infrared reflection and 8-14 µm low emissivity composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 508-514(in Chinese). [21] 张伟钢, 徐国跃, 乔加亮, 等. Al-Sm2O3/聚氨酯复合涂层的近红外低反射与8~14 μm低发射率性能[J]. 复合材料学报, 2014, 31(2): 436-446.ZHANG Weigang, XU Guoyue, QIAO Jialiang, et al. Low emissivity at 8 to 14 μm and low near-infrared reflective properties of Al-Sm2O3/polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 436-446 (in Chinese). [22] 谢国华, 张佐光. 红外与雷达隐身涂层激光后散射特性[J]. 复合材料学报, 2004(5): 93-97.XIE Guohua, ZHANG Zuoguang. Back reflection characteristics of laser on infrared camouflage coating and microwave absorbing coating[J]. Acta Materiae Compositae Sinica, 2004(5): 93-97(in Chinese). [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).