留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层

宁亮 董春蕾 王贤明 吴连锋 于美杰 王成国

宁亮, 董春蕾, 王贤明, 等. 雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层[J]. 复合材料学报, 2024, 41(11): 5851-5858. doi: 10.13801/j.cnki.fhclxb.20240004.002
引用本文: 宁亮, 董春蕾, 王贤明, 等. 雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层[J]. 复合材料学报, 2024, 41(11): 5851-5858. doi: 10.13801/j.cnki.fhclxb.20240004.002
NING Liang, DONG Chunlei, WANG Xianming, et al. Radar-IR dual band compatible carbon fiber/aluminum powder/modified ethylene propylene diene composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5851-5858. doi: 10.13801/j.cnki.fhclxb.20240004.002
Citation: NING Liang, DONG Chunlei, WANG Xianming, et al. Radar-IR dual band compatible carbon fiber/aluminum powder/modified ethylene propylene diene composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5851-5858. doi: 10.13801/j.cnki.fhclxb.20240004.002

雷达-红外双波段兼容的碳纤维/铝粉/改性三元乙丙复合涂层

doi: 10.13801/j.cnki.fhclxb.20240004.002
基金项目: 山东省重点研发计划(重大科技创新工程)(2021ZLGX01;2021CXGC010903);山东省自然科学基金(ZR2022ME055)
详细信息
    通讯作者:

    王贤明,硕士,正高级工程师,硕士生导师,研究方向为特种涂料 E-mail: wxm133701@163.com

    王成国,博士,教授,博士生导师,研究方向为碳纤维复合材料 E-mail:wangchg@sdu.edu.cn

  • 中图分类号: TB332

Radar-IR dual band compatible carbon fiber/aluminum powder/modified ethylene propylene diene composite coating

Funds: Key Research and Development Program of Shandong Province (2021ZLGX01; 2021CXGC010903); Shandong Province Natural Science Foundation (ZR2022ME055)
  • 摘要: 多波段兼容的复合涂层材料在军民融合领域需求迫切,是目前的研究热点。涂料粘结剂是影响涂层力学性能、红外性能和介电性能的重要组分,然而大部分有机粘结剂红外发射率较高,添加低发射率填料后往往无法协调力学性能、红外隐身和雷达透波性能之间的矛盾。以丙烯酸(AA)、马来酸酐(MAH)为改性单体对三元乙丙粘结剂进行接枝改性,以改性前后的三元乙丙为粘结剂,以漂浮性铝粉和短切抗静电碳纤维为填料,制备了具有低红外发射率和低介电损耗特性的复合涂层。系统研究了改性单体种类、用量对粘结剂本身及对添加填料的复合涂层性能的影响规律。研究结果表明:随着改性单体含量的增加,复合涂层的红外发射率略有提高,而雷达透波性能基本维持不变。粘结剂的接枝改性改善了填料和粘结剂之间的相容性、润湿性和界面结合,显著提高了复合涂层的力学性能,通过适当的接枝改性,复合涂层的拉伸强度(σb)和断裂伸长率(e)分别可提高32%和18%。分析了引入极性单体对复合涂层介电常数和损耗的影响及对填料与树脂相容性的影响。

     

  • 图  1  接枝改性前后EPDM的红外图谱

    Figure  1.  FTIR spectroscopy of EPDM before and after modification

    图  2  单体含量对改性清漆涂层力学性能的影响

    Figure  2.  Effect of monomer content on mechanical properties of modified varnish coatings

    图  3  复合涂层力学性能随改性单体用量的变化

    Figure  3.  Mechanical properties of the composite coating vary with the amount of the monomers

    图  4  复合涂层拉伸断口SEM图像:(a)低倍图;(b)高倍图;((a1)~(a4)) AA改性;((b1)~(b4)) MAH改性

    Figure  4.  SEM images of composite coating tensile fracture: Low magnification (a) and high magnification (b) of composite coating modified by AA ((a1)-(a4)) and MAH ((b1)-(b4))

    图  5  清漆涂层红外发射率随厚度和底板的变化

    Figure  5.  Infrared emissivity of varnish coating with thickness and base plate type

    图  6  复合涂层红外发射率随改性单体的变化(底板均为环氧板)

    Figure  6.  Infrared emissivity of composite coating vary with the amount of the monomers (The base plates are all epoxy)

    图  7  清漆涂层的介电性能随改性单体用量的变化

    Figure  7.  Dielectric properties of the varnish coating vary with the amount of the monomers

    图  8  改性前后复合涂层的介电性能

    Figure  8.  Dielectric properties of the composite coating before and after modification

    表  1  样品编号和单体用量

    Table  1.   Samples and the dosage of monomers

    Sample Dosage of AA/g Dosage of MAH/g
    EPDM-g-AA1 0.5 0
    EPDM-g-AA2 1.0 0
    EPDM-g-AA3 1.5 0
    EPDM-g-AA4 2.0 0
    EPDM-g-MAH1 0 0.5
    EPDM-g-MAH2 0 1.0
    EPDM-g-MAH3 0 1.5
    EPDM-g-MAH4 0 2.0
    Notes: EPDM—Ethylene propylene diene; AA—Acrylic acid; MAH—Maleic anhydride.
    下载: 导出CSV
  • [1] 张明习, 轩立新. 高性能雷达罩设计与制造关键技术分析[J]. 航空科学技术, 2015, 26(8): 13-18.

    ZHANG Mingxi, XUAN Lixin. The key technologies in designing and fabricating high performance radome[J]. Aeronautical Science & Technology, 2015, 26 (8): 13-18(in Chinese).
    [2] 许群, 张明习. 雷达天线罩电性能测试技术 [M]. 北京: 航空工业出版社, 2021: 1-10.

    XU Qun, ZHANG Mingxi. Radome electrical performance testing techniques [M]. Beijing: Aviation Industry Press, 2021: 1-10(in Chinese).
    [3] 门薇薇, 王志强, 轩立新. 隐身雷达罩技术研究进展综述[J]. 现代雷达, 2017, 39(10): 60-66.

    MEN Weiwei, WANG Zhiqiang, XUAN Lixin. Review of radome stealth technology[J]. Modern Radar, 2017, 39(10): 60-66(in Chinese).
    [4] 孟季茹, 梁国正, 秦华宇, 等. 机载雷达罩涂层的研究概况[J]. 材料导报, 2000(2): 51-52. doi: 10.3321/j.issn:1005-023X.2000.02.019

    MENG Jiru, LIANG Guozheng, QIN Huayu, et al. Research on coating system for radome[J]. Materials Reports, 2000(2): 51-52(in Chinese). doi: 10.3321/j.issn:1005-023X.2000.02.019
    [5] 包宁, 林彬. 天线罩表面涂层的研究[J]. 弹箭与制导学报, 2004(S9): 553-554, 557.

    BAO Ning, LIN Bin. Investigation on surface coating of radome[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004(S9): 553-554, 557(in Chinese).
    [6] 陈翔. 红外低发射率涂料制备及应用研究 [D]. 厦门: 厦门大学, 2019.

    CHEN Xiang. Research on preparation and application of low infrared emissivity coatings [D]. Xiamen: Xiamen University, 2019(in Chinese).
    [7] 齐伦. 耐高温红外低发射率涂层材料设计研究[D]. 成都: 电子科技大学, 2022.

    QI Lun. Research on the design of high-temperature resistant coating materials with low infrared emissivity[D]. Chengdu: University of Electronic Science and Technology of China, 2022(in Chinese).
    [8] ZHANG W G, MA Z W, LYU D D, et al. An ultra-low infrared emissivity composite coating with outstanding mechanical properties and salt water resistance[J]. Infrared Physics & Technology, 2022, 126: 104351.
    [9] WANG Y Y, YU M J, GAO Y X, et al. Three-layer composite coatings with compatibility of low infrared emissivity and high wave transmittance[J]. Journal of Alloys and Compounds, 2023, 943: 169038. doi: 10.1016/j.jallcom.2023.169038
    [10] WANG Y J, ZHOU H P, GAO Y X, et al. Low-infrared-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121: 104025.
    [11] 陈帅. 含平行排列片状金属粒子红外低发射率涂层发射率建模[D]. 成都: 电子科技大学, 2015.

    CHEN Shuai. Modeling emissivity of infrared low emissivity coating containing horizontally oriented metallic flake particles[D]. Chengdu: University of Electronic Science and Technology of China, 2015(in Chinese).
    [12] 何贺贺. 基于吸波材料和超材料的雷达-红外兼容隐身技术研究[D]. 合肥: 合肥工业大学, 2022.

    HE Hehe. Research of radar-infrared compatible stealth technology based on absorbing material and metamaterial[D]. Hefei: Hefei University of Technology, 2022(in Chinese).
    [13] DUAN Y P, WANG M, CHEN W, et al. Layered metamaterials with Sierpinski triangular fractal metasurface: Compatible stealth for S-band radar and infrared[J]. Materials Today Physics, 2023, 38: 101210. doi: 10.1016/j.mtphys.2023.101210
    [14] ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology, 2023, 146: 10-18.
    [15] YUAN L, WENG X, DENG L. Influence of binder viscosity on the control of infrared emissivity in low emissivity coating[J]. Infrared Physics & Technology, 2013, 56: 25-29.
    [16] WANG Y, ZHOU H, GAO Y, et al. Low-infra red-emissivity Al@SiO2/EPDM composite coating compatible with low dielectric loss and antistatic property[J]. Infrared Physics & Technology, 2022, 121: 10425.
    [17] SUN K, ZHANG D, YIN H, et al. Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer[J]. Applied Surface Science, 2022, 578: 152051.
    [18] LEONE G, ZANCHIN G, DI GIROLAMO R, et al. Semibatch terpolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene: Heterogeneous high-ethylene EPDM thermoplastic elastomers[J]. Macromolecules, 2020, 53(14): 5881-5894. doi: 10.1021/acs.macromol.0c01123
    [19] 张伟钢, 陈昭, 薛连海. 酸蚀Al粉对Al-聚氨酯复合涂层光泽度与红外发射率的影响[J]. 复合材料学报, 2017, 34(10): 2182-2186.

    ZHANG Weigang, CHEN Zhao, XUE Lianhai. Effects of acid-etched Al powders on glossiness and infrared emissivity of Al-polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2182-2186(in Chinese).
    [20] 张伟钢, 薛连海, 刘羽熙, 等. 耐温型近红外低反射与8~14 μm低发射率兼容涂层的制备及性能表征[J]. 复合材料学报, 2017, 34(3): 508-514.

    ZHANG Weigang, XUE Lianhai, LIU Yuxi, et al. Preparation and property characterization of heat resistant low near-infrared reflection and 8-14 µm low emissivity composite coatings[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 508-514(in Chinese).
    [21] 张伟钢, 徐国跃, 乔加亮, 等. Al-Sm2O3/聚氨酯复合涂层的近红外低反射与8~14 μm低发射率性能[J]. 复合材料学报, 2014, 31(2): 436-446.

    ZHANG Weigang, XU Guoyue, QIAO Jialiang, et al. Low emissivity at 8 to 14 μm and low near-infrared reflective properties of Al-Sm2O3/polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 436-446 (in Chinese).
    [22] 谢国华, 张佐光. 红外与雷达隐身涂层激光后散射特性[J]. 复合材料学报, 2004(5): 93-97.

    XIE Guohua, ZHANG Zuoguang. Back reflection characteristics of laser on infrared camouflage coating and microwave absorbing coating[J]. Acta Materiae Compositae Sinica, 2004(5): 93-97(in Chinese).
    [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  116
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2023-12-23
  • 录用日期:  2023-12-25
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回