Cobalt and nitrogen co-doped biochar enhanced peroxymonosulfate activation for Bisphenol A degradation
-
摘要:
内分泌干扰物双酚A (Bisphenol A,BPA)在环境中对生态安全构成了潜在的威胁,因此需要寻找一种合适的处理方法。基于Co、N共掺杂材料具有反应活性高、化学稳定性高、去除污染物效率高等优势,本文以杉木屑生物炭为原料进行Co、N共掺杂制备了具有高效过一硫酸盐(PMS)活化能力的钴、氮共掺杂生物炭(CoNC)复合材料,用以活化PMS去除水体中BPA。相比于C、NC及CoC,CoNC的表面粗糙程度增加,缺陷点位增多,电荷转移阻力减小,且结构比表面积与孔隙结构得到改善,比表面积达到70.31 m2/g;对不同Co、N掺杂比、溶液初始pH、共存阴离子对BPA去除效率的影响进行了研究。结果表明:相比于原始材料,CoNC+PMS体系表现出优异的BPA去除能力。在溶液初始pH为7,CoNC投加量为0.2 g/L,PMS浓度为0.3 mmol/L,模拟水体中BPA浓度为20 mg/L的条件下,BPA去除率在30 min达到95%。捕获实验、电化学表征表明:在CoNC+PMS体系中,BPA主要通过直接电荷转移的非自由基途径得到降解。本文为生物炭催化性能的优化及BPA在高级氧化技术中的降解研究提供借鉴。
Abstract:The endocrine disruptor Bisphenol A (BPA) poses a potential threat to environmental ecological safety, for which a suitable treatment method needs to be found. Based on the advantages of high reactivity, chemical stability and pollutant removal efficiency of CoN co-doped material, CoN co-doped biochar (CoNC) composites with high peroxymonosulphate (PMS) activation efficiency were prepared by Co and N co-doping with fir sawdust biochar as raw material. And the activation of PMS by CoNC for the removal of BPA from environmental water has been investigated. Compared to C, NC, and CoC materials, CoNC showed improved surface roughness, more defect sites, reduced charge transfer resistance, and improved structural surface area and pore structure, with a specific surface area of 70.31 m2/g. The effects of different Co and N doping ratios, initial solution pH, and co-existing anions on the removal efficiency of BPA were also investigated. The results showed that the CoNC+PMS system exhibited excellent BPA removal compared to the original material. Under the conditions of initial solution pH 7, 0.2 g/L CoNC material, 0.3 mmol/L PMS concentration, and BPA concentration of 20 mg/L in the simulated water, the BPA removal reached 95% in 30 min. The capture experiments and electrochemical characterization showed that CoNC+PMS degraded BPA mainly through the non-radical pathway of direct charge transfer. This study provides a reference for optimising the catalytic performance of biochar and its BPA degradation in advanced oxidation technology.
-
Keywords:
- biochar /
- CoN co-doping /
- Bisphenol A /
- peroxymonosulfate /
- non-radical pathway
-
-
图 11 活性物种捕获实验(a)、PMS/CoNC (b)及PMS/CoNC+BPA (c)的电子顺磁共振(EPR)波谱
MeOH—Methanol; TBA—Tert-butanol; BZQ—p-benzoquinone; FFA—Furfuryl alcohol; TEMP—2,2,6,6-tetramethylp; DMPO—5, 5-dimethyl-1-pyrroline N-oxide
Figure 11. Active species capturing experiments (a), electron paramagnetic resonance (EPR) spectra in PMS/CoNC (b) and PMS/CoNC+BPA (c) system
图 12 (a)不同材料的电化学阻抗(EIS)曲线图;不同体系的线性伏安扫描(LSV)曲线图(b)、计时电流响应(i-t)曲线(c)及开路电压(OCV)曲线(d)
∆E—Potential difference; SCE—Saturated calomel electrde; −Z''—Imaginary part of impedance; Z'—Real part of impedance
Figure 12. (a) Electrochemical impedance (EIS) plots of different materials; Linear voltammetry scanning (LSV) curves (b), timing current response (i-t) curves (c) and open circuit voltage (OCV) curves (d) of different systems
表 1 使用试剂名称及试剂来源
Table 1 Name of used reagent and source of reagent
Sample Purity Producer Bisphenol A AR Shanghai, China Co(NO3)2·5H2O AR Guangdong, China Zn(NO3)2·6H2O AR Guangdong, China Dicyandiamide AR Guangdong, China Peroxymonosulphate AR Guangdong, China Methanol AR Shanghai, China
Shanghai, ChinaTert-butanol AR 1, 4-benzoquinone AR Shanghai, China Furfuryl alcohol AR Shanghai, China 表 2 材料命名
Table 2 Nomenclature of composites
Sample Content of Co/wt% Content of N/wt% Content of C/wt% C — — 100.0 NC — 80.0 20.0 CoC 22.5 — 77.5 CoNC 5.5 75.6 18.9 Co(20)NC 2.8 77.8 19.4 Co(40)NC 5.5 75.6 18.9 Co(60)NC 8.0 73.6 18.4 Co(40)NC(2∶1) 8.8 60.8 30.4 Co(40)NC(4∶1) 5.5 75.6 18.9 Co(40)NC(6∶1) 4.0 82.3 13.7 表 3 C、NC和CoNC的BET分析结果
Table 3 BET analysis of C, NC and CoNC
Sample Surface area/
(m2·g−1)Pore volume/
(cm3·g−1)Average pore
diameter/nmC 29.25 0.02 6.61 NC 42.67 0.19 13.11 CoNC 73.01 0.23 9.49 -
[1] CZARNY-KRZYMINSKA K, KRAWCZYK B, SZCZUKOCKI D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment[J]. Chemosphere, 2023, 315: 137763. DOI: 10.1016/j.chemosphere.2023.137763
[2] WANG Y, GAI T, ZHANG L, et al. Neurotoxicity of bisphenol A exposure on Caenorhabditis elegans induced by disturbance of neurotransmitter and oxidative damage[J]. Ecotoxicology and Environmental Safety, 2023, 252: 114617. DOI: 10.1016/j.ecoenv.2023.114617
[3] 郭彦秀, 李旭光, 侯太磊, 等. 生物炭基材料活化过一硫酸盐降解有机污染物的研究进展[J]. 环境科学研究, 2021, 34(4): 936-944. GUO Yanxiu, LI Xuguang, HOU Tailei, et al. Review of biochar-based materials for catalyzing peroxymonosulfate degradation of organic pollutants[J]. Research of Environmental Sciences, 2021, 34(4): 936-944(in Chinese).
[4] ZHAO Q, MAO Q, ZHOU Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. DOI: 10.1016/j.chemosphere.2017.09.042
[5] DONG J, XU W, LIU S, et al. Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects[J]. Journal of Cleaner Production, 2021, 321: 128781. DOI: 10.1016/j.jclepro.2021.128781
[6] WANG J, ZHAO Y, LI C, et al. Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons[J]. Science of the Total Environment, 2022, 836: 155670. DOI: 10.1016/j.scitotenv.2022.155670
[7] YAN S W, LAN L, HAO D, et al. Activation of peroxymonosulfate by food waste digestate derived biochar for sulfamethoxazole degradation: Performance and mechanism[J]. Separation and Purification Technology, 2023, 327: 124935. DOI: 10.1016/j.seppur.2023.124935
[8] LAI L, ZHOU P, ZHOU H, et al. Heterogeneous Fe(III)/Fe(II) circulation in FeVO4 by coupling with dithionite towards long-lasting peroxymonosulfate activation: Pivotal role of vanadium as electron shuttles[J]. Applied Catalysis B: Environmental, 2021, 297: 120470. DOI: 10.1016/j.apcatb.2021.120470
[9] LU J, LU Q, DI L, et al. Iron-based biochar as efficient persulfate activation catalyst for emerging pollutants removal: A review[J]. Chinese Chemical Letters, 2023, 34: 108357. DOI: 10.1016/j.cclet.2023.108357
[10] LUO J, BO S, QIN Y, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125063. DOI: 10.1016/j.cej.2020.125063
[11] QIN Y, LI X, WANG L, et al. Valuable cobalt/biochar with enriched surface oxygen containing groups prepared from bio-waste shrimp shell for efficient peroxymonosulfate activation[J]. Separation and Purification Technology, 2022, 281: 119901. DOI: 10.1016/j.seppur.2021.119901
[12] LIU Y, CHEN Y, LI Y, et al. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review[J]. Journal of Hazardous Materials, 2022, 431: 128584. DOI: 10.1016/j.jhazmat.2022.128584
[13] 娄亚敏, 王树莲, 裴晨浩, 等. 掺氮生物炭活化过硫酸盐降解双酚A的研究[J]. 环境科学与技术, 2023, 46(10): 78-90. LOU Yamin, WANG Shulian, PEI Chenhao, et al. The research of Bisphenol A degradation by persulfate activated with N-doped biochar[J]. Environmental Science & Technology, 2023, 46(10): 78-90(in Chinese).
[14] GAO W, LIN Z, CHEN H, et al. A review on N-doped biochar for enhanced water treatment and emerging applications[J]. Fuel Processing Technology, 2022, 237: 107468. DOI: 10.1016/j.fuproc.2022.107468
[15] CHOONG Z Y, LIN K Y A, LISAK G, et al. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review[J]. Journal of Hazardous Materials, 2022, 426: 128077. DOI: 10.1016/j.jhazmat.2021.128077
[16] 王俊辉, 陆彩妹, 李泽华, 等. 磁性氮掺杂杉木屑生物炭活化过一硫酸盐降解左氧氟沙星[J]. 复合材料学报, 2023, 40(11): 6383-6394. WANG Junhui, LU Caimei, LI Zehua, et al. Preparation of magnetic nitrogen-doped fir sawdust biochar to activate peroxymonosulfate for Levofloxacin degradation[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6383-6394(in Chinese).
[17] CAO T T, XU T F, DENG F X, et al. Reactivity and mechanism between OH and phenolic pollutants: Efficiency and DFT calculation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407: 113025. DOI: 10.1016/j.jphotochem.2020.113025
[18] YUE Y, JIA Y, BAO G Z, et al. Efficient sulfamethoxazole degradation via boosting nonradical-based peroxymonosulfate activation by biochar supported Co-Ni bimetal oxide[J]. Journal of Environmental Chemical Engineering, 2023, 115: 110903.
[19] AN L, WANG J, WANG J, et al. Efficient peroxymonosulfate activation by iron-cobalt bimetallic biochar for rapid removal of antibiotic resistant bacteria, antibiotic resistance genes, and ampicillin: The coexisting of free-radical and non-radical pathways[J]. Separation and Purification Technology, 2024, 342: 127025. DOI: 10.1016/j.seppur.2024.127025
[20] DUNG N T, THAO V D, THAO N P, et al. Turning peroxymonosulfate activation into singlet oxygen-dominated pathway for ofloxacin degradation by co-doping N and S into durian peel-derived biochar[J]. Chemical Engineering Journal, 2024, 483: 149099. DOI: 10.1016/j.cej.2024.149099
[21] SUN J B, ZHANG D J, XIA D S, et al. Orange peels biochar doping with Fe-Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of SO4−•, •OH, 1O2 and electron transfer[J]. Chemical Engineering Journal, 2023, 471: 144832. DOI: 10.1016/j.cej.2023.144832
[22] PENG X Q, LI Y Y, ZHU K R, et al. CoSx produced in porphyra biochar by exogenous Co and endogenous S doping to enhance peroxymonosulfate activation for carbamazepine degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11: 110988. DOI: 10.1016/j.jece.2023.110988
[23] 张家晶, 郑永杰, 荆涛, 等. 3D花状MoS2/O-g-C3N4 Z型异质结增强光催化剂降解双酚A[J]. 复合材料学报, 2022, 39(12): 5778-5791. ZHANG Jiajing, ZHENG Yongjie, JING Tao, et al. 3D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of bisphenol A[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5778-5791(in Chinese).
[24] YU J, ZHU Z, ZHANG H, et al. Fe-nitrogen-doped carbon with dual active sites for efficient degradation of aromatic pollutants via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 427: 130898. DOI: 10.1016/j.cej.2021.130898
[25] MEI Y, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. DOI: 10.1016/j.biortech.2021.124732
[26] DING H, ZHANG Z, LI Y, et al. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on pi-pi electron donor-acceptor interaction[J]. Bioresource Technology, 2022, 364: 128018. DOI: 10.1016/j.biortech.2022.128018
[27] QU J, ZHANG X, LIU S, et al. One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms[J]. Bioresource Technology, 2022, 361: 127718. DOI: 10.1016/j.biortech.2022.127718
[28] HO S H, CHEN Y D, LI R, et al. N-doped graphitic biochars from C-phycocyanin extracted spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation[J]. Water Research, 2019, 159: 77-86. DOI: 10.1016/j.watres.2019.05.008
[29] 姚淑华, 陈艺文, 董毅, 等. 生物炭负载纳米零价铁活化过硫酸盐去除废水中环丙沙星[J]. 化工环保, 2023, 43(6): 773-779. YAO Shuhua, CHEN Yiwen, DONG Yi, et al. Removal of cyprofloxacin from wastewater using persulfate activated by biochal supported nano zero-valent iron[J]. Environmental Protection of Chemical Industry, 2023, 43(6): 773-779(in Chinese).
[30] WANG L X, LIU K, FU T, et al. Multiple effects of nano-carbon coating on mediating Schottky barrier height, inhibiting Ti3C2 oxidation and elevating photocatalytic activity in BiOBr/carbon-coated Ti3C2/exfoliated bentonite[J]. Chemical Engineering Journal, 2024, 480: 148252. DOI: 10.1016/j.cej.2023.148252
[31] YE S, ZENG G, TAN X, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Applied Catalysis B: Environmental, 2020, 269: 118850. DOI: 10.1016/j.apcatb.2020.118850
[32] HUANG J, WANG M, LUO S, et al. In situ preparation of highly graphitized N-doped biochar geopolymer composites for efficient catalytic degradation of tetracycline in water by H2O2[J]. Environmental Research, 2023, 219: 115166. DOI: 10.1016/j.envres.2022.115166
[33] HE Y L, HE C S, LAI L D, et al. Activating peroxymonosulfate by N and O co-doped porous carbon for efficient BPA degradation: A revisit to the removal mechanism and the effects of surface unpaired electrons[J]. Applied Catalysis B: Environmental, 2022, 314: 121390. DOI: 10.1016/j.apcatb.2022.121390
[34] 赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 2020, 38(6): 28-34. ZHAO Jie, HE Yuhong, ZHANG Xiaoming, et al. Effect on Cr(Ⅵ) adsorption performance of acid-base modified biochar[J]. Environmental Engineering, 2020, 38(6): 28-34(in Chinese).
[35] PENG L, SHANG Y, GAO B, et al. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N-Co binding and high tolerance of chloride[J]. Applied Catalysis B: Environmental, 2021, 282: 119484. DOI: 10.1016/j.apcatb.2020.119484
[36] LUO R, WANG C, YAO Y, et al. Insights into the relationship of reactive oxygen species and anions in persulfate-based advanced oxidation processes for saline organic wastewater treatment[J]. Environmental Science: Water Researchearch & Technology, 2022, 8(3): 465-483.
[37] CHEN X, QIAN S, MA Y, et al. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism[J]. Environmental Pollution, 2023, 319: 121010. DOI: 10.1016/j.envpol.2023.121010
[38] SUN F, CHEN T, CHU Z, et al. The synergistic effect of calcite and Cu2+ on the degradation of sulfadiazine via PDS activation: A role of Cu(Ш)[J]. Water Research, 2022, 219: 118529. DOI: 10.1016/j.watres.2022.118529
[39] LU C, SONG R, WANG J, et al. New insights into cupric ion-mediated ligand-to-metal charge transfer between TiO2 with peroxydisulfate under visible light for bolstering benzophenone-3 degradation[J]. Separation and Purification Technology, 2023, 310: 123168. DOI: 10.1016/j.seppur.2023.123168
[40] XU L, CAO S, BAI X, et al. Efficient Fe(III) reduction and persulfate activation induced by ligand-to-metal charge transfer under visible light enhances degradation of organics[J]. Chemical Engineering Journal, 2022, 446: 137052. DOI: 10.1016/j.cej.2022.137052
[41] XIONG S, DENG Y, GONG D, et al. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway[J]. Chemosphere, 2021, 284: 131404. DOI: 10.1016/j.chemosphere.2021.131404
[42] DOU J, CHENG J, LU Z, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process[J]. Applied Catalysis B: Environmental, 2022, 301: 120832. DOI: 10.1016/j.apcatb.2021.120832
[43] PENG X, WU J, ZHAO Z, et al. Activation of peroxymonosulfate by single atom Co N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245. DOI: 10.1016/j.cej.2021.132245
[44] WU L Y, SUN Z Q, ZHEN Y F, et al. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system[J]. Environmental Science & Technology, 2021, 55(22): 15400-15411.
-
目的
内分泌干扰物双酚A(Bisphenol A, BPA)在环境中对生态安全构成了潜在的威胁,因此需要寻找一种合适的处理方法。本文利用Co、N共掺杂改性生物炭活化过一硫酸盐(Peroxymonosulphate, PMS)去除水体中BPA,探索水体中BPA的催化降解机制以及生物炭催化性能的优化过程。
方法基于Co、N共掺杂生物炭复合材料具有反应活性高、化学稳定性高以及生物炭材料更易触发非自由基降解途径等优点,本研究通过一锅煅烧法成功制备了钴氮共掺杂杉木屑生物炭(CoNC),向生物炭表面同时引入金属Co和非金属N,并将其应用于水体中BPA的降解去除。通过表征分析,对制备的CoNC的表面形貌、晶体结构以及元素组成进行了分析。此外,结合实验与表征结果,对CoNC活化PMS降解BPA的原理、机制以及非自由基降解路径在降解过程中的作用进行了研究。
结果明确了CoNC活化PMS降解BPA的催化降解机制。首先,通过SEM以及N−BET可以得出生物炭的表面形貌结构在经过Co、N共掺杂后得到了有效改善。比表面积以及孔容孔径得到了显著增加,这有利于BPA与PMS在材料表面的富集以缩短反应路径。通过XRD、拉曼以及XPS结果可知,Co、N共掺杂显著提高了生物炭的石墨化程度。结合EIS结果可得,提升的石墨化程度显著降低了电子传递阻力,更有利于直接电荷传递主导的非自由基途径。此外,OCV曲线表明加入BPA后,PMS在CoNC作用下活化,形成了具有高氧化电位的复合物,而加入BPA之后OCV下降表明BPA存在向复合物的电子转移过程,这是由于BPA具有给电子基团(酚羟基)具有较强的还原性,易于向高氧化电位的复合物主动传递电子,从而发生降解过程。进一步通过i-t曲线以及LSV表明CoNC与BPA之间存在更高的电子传递效率,证明了CoNC与BPA之间的电子传递过程。BPA具体降解机制主要涉及直接电子转移的非自由基途径:PMS能够吸附在CoNC表面缺陷和带正电的C位点,形成具有高氧化电位的亚稳态“碳-PMS”复合物。BPA分子通过向亚稳态复合物转移电子从而发生降解。
结论(1) 采用一锅煅烧法成功制备了钴氮共掺杂杉木屑生物炭(CoNC)。通过引入金属Co与非金属N为生物炭增加了多种活性位点,非金属N掺杂能够促进生物炭表面缺陷的形成,金属Co掺杂能够提高生物炭石墨化程度,有效富集PMS并提高表面电子传递速率显著提升了CoNC对PMS的活性能力。(2) CoNC对于活化PMS降解BPA具有优异的催化降解性能。其中PMS/CoNC体系能在30 min内去除模拟水体中95%的BPA,去除效率优于PMS/NC(62%)、CoC(39%)和C(11%)。且pH在3~9范围内时,PMS/CoNC体系保持较高的抗干扰能力,对BPA的降解效率维持在95%以上。(3) PMS/CoNC体系对于BPA的降解过程中,材料与PMS通过形成亚稳态“碳-PMS”复合物进行直接电子转移的非自由基途径是其主导的催化降解机制,而O参与的非自由基途径次之。