EPS-石墨烯-水泥基复合吸波材料的制备与性能

Preparation and Electromagnetic Absorbing Performance of EPS-Graphene-Cement-based Composites

  • 摘要: 为了应对城市建筑空间的电磁辐射威胁,本文研究了多层石墨烯(Multilayer graphene,MG)与发泡聚苯乙烯(Expanded polystyrene,EPS)球形颗粒对水泥基复合材料电磁吸波性能的影响规律,探究了双层平板结构EPS-MG-水泥基复合吸波材料的最优组合,阐述了该复合材料的吸波作用机制。实验结果表明:复合材料中的EPS颗粒在基体内形成了独特的多孔阵列结构,显著增强了材料与自由空间的电磁匹配性能;并且EPS球形颗粒既是透波剂也是谐振腔,在合理的掺量下能与MG搭配形成良好的多孔导电网络,可通过界面极化、电阻损耗以及极化弛豫等方式吸收入射电磁波的能量。在此基础上,通过双层平板组合结构,充分利用密度梯度及层间效应,进一步提高了电磁波能量在传输过程中的耗散作用,实现了结构与材料组分之间良好的协同增强效果,在2~18 GHz的有效吸收带宽达到了7.93 GHz,并获得−18.80 dB的最强吸收峰,具备良好的电磁吸波性能,为低成本建筑吸波材料的发展提供了新思路。

     

    Abstract: In order to cope with the threat of electromagnetic radiation in urban building spaces, the influence law of multi-layer graphene (MG) and expanded polystyrene (EPS) spherical particles on the electromagnetic absorption properties of cementitious composites was investigated. The optimal combination of EPS-MG-cement-based composite wave-absorbing materials with double-layer flat plate structure was explored, and the mechanism of wave-absorbing action of the composites was elaborated. The experimental results showed that the EPS particles in the composites form a unique porous array structure in the matrix, which significantly enhances the electromagnetic matching performance between the material and the free space. Moreover, the EPS spherical particles are both wave-transparent agents and resonance cavities, which can form a good porous conductive network with MG under reasonable doping, and can absorb the energy of the incident electromagnetic wave through interfacial polarization, resistive loss and polarization relaxation. On this basis, this paper makes full use of the density gradient and interlayer effect through the double-layer flat plate combination structure, which further improves the dissipation of electromagnetic wave energy in the transmission process, realizes a good synergistic enhancement effect between the structure and the material components, and the effective absorption bandwidth of 2~18 GHz reaches 7.93 GHz. The maximum absorption peak of −18.80 dB is obtained, which has a good electromagnetic wave absorbing performance, and provides a new idea for the development of wave-absorbing materials for low-cost buildings.

     

/

返回文章
返回