醋酸纤维素增韧木质素/PBAT多功能薄膜的制备与性能研究

Preparation and property characterization of cellulose acetate toughened lignin/PBAT composite films

  • 摘要: 木质素是自然界中最丰富的可再生芳香资源,将其用于开发多功能生物基塑料,有望替代石油基资源,是缓解塑料污染,降低对石油资源依赖度的有效途径之一。本研究创新性地提出醋酸纤维素(CA)增韧体系,系统探究了CA调控木质素/聚对苯二甲酸-己二酸丁二醇酯(PBAT)复合薄膜的结构与性能机制,并与传统TEC-MDI体系进行对比,旨在解决高木质素添加量下PBAT力学性能大幅下降的问题。研究采用溶液浇铸法结合热压成型工艺,在PBAT中添加酶解木质素的同时,分别引入醋酸纤维素和柠檬酸三乙酯/二苯基甲烷二异氰酸酯(MDI)。通过拉伸测试、热重分析(TGA)、差示扫描量热(DSC)、扫描电镜(SEM)、紫外阻隔及气体阻隔性能测试,揭示了醋酸纤维素优于柠檬酸三乙酯/MDI的增韧机制。结果表明,添加20wt%酶解木质素时,薄膜断裂伸长率仅为12±2%,拉伸强度为2.6±0.2 MPa;经15wt%醋酸纤维素增韧后,醋酸纤维素可能通过羟基-酯基氢键增强界面相容性,使木质素均匀分散且断面致密,伸长率和拉伸强度分别恢复至430±10%和11.2±0.6 MPa。20wt%木质素添加赋予薄膜优异的紫外吸收性能,UVA、UVB阻隔率接近100%,且增韧后气体透过率与纯PBAT相当。该增韧策略解决了相容性差导致木质素/PBAT薄膜力学性能劣化的问题,为高性能、多功能可降解薄膜的制备提供了技术支撑。

     

    Abstract: Lignin is the most abundant renewable aromatic resource in nature. Utilizing lignin to develop multifunctional biobased plastics is expected as one of the most effective ways to alleviate plastic pollution and reduce the dependence on petroleum resources. This study innovatively proposed a cellulose acetate (CA) toughening system to regulate the structure and properties of lignin/polybutylene adipate-co-terephthalate (PBAT) composite films and compared to the traditional TEC-MDI system, aiming to solve the problem of decrement in the mechanical properties of PBAT with high lignin loading. A solution casting method combined with hot-pressing was developed to prepare lignin/PBAT composite films. Accompanying with lignin, cellulose acetate (CA) or triethyl citrate/diphenylmethane diisocyanate (MDI) was introduced. The toughening mechanisms were investigated through tensile tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), ultraviolet blocking, and gas barrier performance tests. The results demonstrated the superiority of CA over the TEC/MDI system. The film with 20wt% lignin showed poor mechanical properties (elongation at break: 12±2%; tensile strength: 2.6±0.2 MPa). After toughening with 15wt% CA, the interfacial compatibility maybe enhanced via hydroxyl-ester hydrogen bonds, leading to uniform dispersion of lignin and a dense fracture surface. Consequently, the elongation at break and tensile strength recovered to 430±10% and 11.2±0.6 MPa, respectively. The incorporation of 20wt% lignin also provided excellent UV absorption, with UVA and UVB blocking rates reaching to ~100%, while the gas permeability remained comparable to that of pure PBAT. This CA toughening strategy effectively addresses the mechanical deterioration caused by poor interfacial compatibility in PBAT/lignin composite films, providing a technical foundation for preparing high-performance and multifunctional biodegradable films.

     

/

返回文章
返回