Loading [MathJax]/jax/output/SVG/jax.js

不锈钢筋珊瑚海水海砂混凝土梁受弯试验及承载力计算

谢旺军, 马志鑫, 周济, 区王生, 陈宗平

谢旺军, 马志鑫, 周济, 等. 不锈钢筋珊瑚海水海砂混凝土梁受弯试验及承载力计算[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 谢旺军, 马志鑫, 周济, 等. 不锈钢筋珊瑚海水海砂混凝土梁受弯试验及承载力计算[J]. 复合材料学报, 2024, 43(0): 1-12.
XIE Wangjun, MA Zhixin, ZHOU Ji, et al. Flexural experiment and bearing capacity calculation of stainless steel reinforced coral seawater sea sand concrete beams[J]. Acta Materiae Compositae Sinica.
Citation: XIE Wangjun, MA Zhixin, ZHOU Ji, et al. Flexural experiment and bearing capacity calculation of stainless steel reinforced coral seawater sea sand concrete beams[J]. Acta Materiae Compositae Sinica.

不锈钢筋珊瑚海水海砂混凝土梁受弯试验及承载力计算

基金项目: 国家自然科学基金(51578163);八桂学者专项研究经费项目([2019]79号);2022年度广西高校中青年教师基础能力提升项目(2022KY1139)
详细信息
    通讯作者:

    陈宗平,博士,教授,博士生导师,研究方向为近海及海洋混凝土结构 E-mail: zpchen@gxu.edu.cn

  • 中图分类号: TU375.1

Flexural experiment and bearing capacity calculation of stainless steel reinforced coral seawater sea sand concrete beams

Funds: National Natural Science Foundation of China (51578163); Eight Gui Scholars Special Research Fund Project ([2019]79); 2022 Guangxi Young and Middle aged Teacher Basic Ability Enhancement Project (2022KY1139)
  • 摘要:

    为探究一种新型耐腐蚀海洋混凝土结构构件“不锈钢筋珊瑚海水海砂混凝土梁”的受弯性能,以截面配筋率和钢筋种类(不锈钢筋与普通钢筋)为变化参数,制作了8根珊瑚海水海砂混凝土梁试件。通过单调静力加载试验观测了试件的破坏过程、破坏形态,获取了试件的弯矩-跨中挠度曲线和关键力学性能指标,研究了截面配筋率及钢筋种类对试件力学性能指标的影响规律。试验结果表明,试件发生混凝土压碎破坏与混凝土斜向破坏两种破坏形态;提高不锈钢筋截面配筋率能够延缓裂缝发展的速度,不锈钢筋试件开裂弯矩与普通钢筋试件基本相同;随着配筋率的提高,不锈钢筋珊瑚海水海砂混凝土梁的峰值承载力逐渐提高,最大增幅为51.23%,初始刚度逐渐增加,最大增幅为40.22%。不锈钢筋试件的峰值承载力比普通钢筋试件高出69.08%,初始刚度下降17.53%。根据不同国家规范计算开裂弯矩,发现国内规范计算值与试验值吻合程度最高。在已有研究的基础上提出了不锈钢筋珊瑚海水海砂混凝土梁的受弯承载力计算公式,计算值与试验值比值均值为0.98,吻合程度高。

     

    Abstract:

    To research the flexural performance of a new type of corrosion-resistant ocean concrete structural component, "stainless steel reinforced coral seawater sea sand concrete beam", eight coral seawater sea sand concrete beam specimens were fabricated with variable parameters of section reinforcement ratio and steel reinforcement type (stainless steel reinforcement and ordinary steel reinforcement). The failure process, failure mode, and crack development process of the specimens were observed through monotonic static loading experiment, and the flexural moment-mid span deflection curves and key mechanical performance indicators of the specimens were obtained. The influence of reinforcement ratio and reinforcement type on the mechanical performance indicators of the specimens were studied. The experimental results indicate that there are two types of failure modes in the specimen: concrete crushing failure and concrete oblique failure; The development of cracks can be slowed down by improving the reinforcement ratio of stainless steel bars, and the cracking load of stainless steel bar specimens is basically the same as that of ordinary steel bar specimens; With the increase of reinforcement ratio, the peak bearing capacity of stainless steel reinforced coral seawater sand concrete beams gradually increases, with a maximum increase of 51.23%, and the initial stiffness gradually increases, with a maximum increase of 40.22%. The peak bearing capacity of stainless steel reinforcement specimens is 69.08% higher than that of ordinary steel reinforcement specimens, and the initial stiffness decreases by 17.53%. According to different national specifications, the cracking flexural moment was calculated, and it is found that the domestic specification calculation values have the highest degree of agreement with the experimental values. On the basis of existing research, a formula for calculating the flexural bearing capacity of stainless steel reinforced coral seawater sand concrete beams has been proposed. The average ratio of the calculated values to the experimental values is 0.98, indicating a high degree of agreement.

     

  • 图  1   不锈钢筋珊瑚海水海砂混凝土梁试件设计图(单位:mm)

    Figure  1.   Diagram of stainless steel reinforced coral seawater sea sand concrete beam specimen design (Unit: mm)

    图  2   珊瑚骨料与不锈钢筋

    Figure  2.   Coral aggregates and stainless steel rebars

    图  3   不锈钢及普通钢筋应力-应变曲线

    Figure  3.   Stress-strain curves of stainless steel and ordinary steel bars

    图  4   加载装置示意图

    Figure  4.   Schematic diagram of loading device

    图  5   不锈钢筋珊瑚海水海砂混凝土梁两类试件破坏图

    Figure  5.   Two types of failure diagrams for stainless steel reinforced coral seawater sea sand concrete beams

    图  6   不锈钢筋珊瑚海水海砂混凝土梁两类试件破坏过程

    Figure  6.   Two types of failure process for stainless steel reinforced coral seawater sea sand concrete beams

    图  7   不锈钢筋珊瑚海水海砂混凝土梁试件弯矩-挠度曲线

    Figure  7.   Flexural moment-deflection curves of stainless steel reinforced coral seawater sea sand concrete beams

    图  8   不同钢筋珊瑚海水海砂混凝土梁最大裂缝宽度曲线

    Figure  8.   Maximum crack width curves of coral seawater sand concrete beams with different reinforcements

    图  9   不同钢筋珊瑚海水海砂混凝土梁跨中截面应变分布

    Figure  9.   Strain distribution of mid span section of coral seawater sand concrete beams with different reinforcements

    图  10   不同参数对不锈钢筋珊瑚海水海砂混凝土梁极限弯矩和初始刚度的影响

    Figure  10.   Effects of different parameters on the ultimate moment and initial stiffness of stainless steel reinforced coral seawater sea sand concrete beams

    图  11   不锈钢应力-应变曲线模型

    Figure  11.   Model of stress-strain curve for stainless steel

    σ—Stress of stainless steel; σu—Ultimate stress of stainless steel; σy—Yield stress of stainless steel; Esh—Slope of hardened section; ε—Strain of stainless steel; εy—Yield strain of stainless steel; εu—Ultimate strain of stainless steel; C—Coefficient

    图  12   承载力极限状态下的截面应变及混凝土等效矩形应力图

    Figure  12.   Cross section strain and equivalent rectangular stress diagram of concrete under ultimate bearing capacity limit state

    h—Sction height; b—Sction width; As—Reinforcement area; As—Reinforcement area; εcu—Ultimate compressive strain at the edge of concrete under compression; εs—Strain of tensile longitudinal rebars; x0—Height of compression zone; h0—Effective height of section; σs—Tensile longitudinal rebars stress; x—Equivalent height of compression zone; fc—Axial compressive strength of concrete; α1—Stress graphic coefficient; β—Stress graphic coefficient

    表  1   试件设计参数与力学性能指标

    Table  1   Design parameters and mechanical performance indexes of specimens

    Specimens number Tension longitudinal reinforcement ρ/% Np/kN Mu/(kN·m) K/(kN·mm−1)
    Quantity Diameter/mm
    SS-2-8 2 8 0.287 60.59 21.81 2.33
    SS-2-10 2 10 0.446 91.63 32.99 2.14
    SS-2-12 2 12 0.642 114.59 41.25 2.52
    SS-3-12 3 12 0.963 151.95 54.70 3.54
    SS-4-12 4 12 1.284 156.96 56.51 3.83
    SS-5-12 5 12 1.605 190.92 68.73 4.34
    SS-6-12 6 12 1.929 185.09 66.63 5.09
    S-3-12 3 12 0.963 89.87 32.35 4.29
    Notes: SS—Stainless steel reinforcement; S—Ordinary steel reinforcement; Np—peak load; Mu—ultimate moment; K—initial stiffness; ρ—reinforcement ratio.
    下载: 导出CSV

    表  2   海水成分

    Table  2   Composition of seawater

    ComponentNaClMgCl2Na2SO4CaCl2KClNaHCO3KBrCl
    Content/%1.0700.2200.2200.0500.0530.00730.00690.87
    下载: 导出CSV

    表  3   混凝土配合比与性能指标

    Table  3   Mix proportion and performance indexes of concrete

    Quantity of concrete per cubic meter/kg·m−3 fcu/
    MPa
    fc/
    MPa
    f'c/
    MPa
    Coral aggregate Sea sand Cement Sea water
    672 753 530 194 32.10 23.05 28.16
    Notes: fcu—cube strength; fc—axial compressive strength; fc—cylindrical compressive strength.
    下载: 导出CSV

    表  4   筋材力学性能

    Table  4   Mechanical properties of reinforcement materials

    Reinforcement type Diameter d/mm Yield strength fy/MPa Yield strain
    εy/10−6
    Ultimate strength fu/MPa Ultimate strain εu/10−6 Elastic modulus Es/GPa
    Stainless steel bars 6 965 6595 1150 0.1352 210
    8 962 6581 1053 0.1531 210
    10 889 6233 1137 0.1451 210
    12 849 6043 1060 0.1616 210
    Ordinary steel bars 6 442 2150 609 0.2025 206
    12 508 2470 667 0.2140 206
    Notes: The yield strength of stainless steel bars is determined by the nominal yield stress corresponding to residual strain of 0.2%.
    下载: 导出CSV

    表  5   不锈钢筋珊瑚海水海砂混凝土梁开裂弯矩计算值与试验值对比结果

    Table  5   Comparison between calculated and experimental values of cracking moment of stainless steel reinforced coral seawater sea sand concrete beams

    Specimens number Experimental valueMecr/(kN·m) GB 50010-2010[24] ACI318-19[27] AS 3600-2018[28]
    Calculated valueMc1cr/(kN·m) Mc1cr/Mecr Calculated valueMc2cr/(kN·m) Mc2cr/Mecr Calculated valueMc3cr/(kN·m) Mc3cr/Mecr
    SS-2-8 6.52 6.72 1.03 5.05 0.78 5.19 0.80
    SS-2-10 7.09 6.93 0.98 5.05 0.72 5.35 0.75
    SS-2-12 7.25 7.19 0.99 5.05 0.70 5.55 0.77
    SS-3-12 7.41 7.61 1.03 5.05 0.68 5.88 0.79
    SS-4-12 7.51 8.04 1.07 5.05 0.67 6.20 0.83
    SS-5-12 9.35 8.45 0.90 5.05 0.54 6.52 0.70
    SS-6-12 9.18 8.87 0.97 5.05 0.55 6.85 0.75
    S-3-12 7.28 7.59 1.04 5.05 0.69 5.85 0.80
    Average value 1.00 0.67 0.77
    Standard deviation 0.05 0.08 0.04
    Coefficient of variation 0.05 0.11 0.05
    Notes: Mecr—Cracking moment experimental value; Mc1cr—Cracking moment calculation value according to GB 50010-2010[24]; Mc2cr—Cracking moment calculation value according to ACI318-19[27]; Mc3cr—Cracking moment calculation value according to AS 3600-2018[28].
    下载: 导出CSV

    表  6   不锈钢筋珊瑚海水海砂混凝土梁承载力计算值与试验值比较

    Table  6   Comparison between calculated and experimental values of bearing capacity of stainless steel reinforced coral seawater sea sand concrete beams

    Data sources Specimens number ρ/% Meu/(kN·m) Mcu/(kN·m) Mcu/Meu
    Experiment SS-2-8 0.287 21.81 21.56 0.99
    SS-2-10 0.446 32.99 30.95 0.94
    SS-2-12 0.642 41.25 38.43 0.93
    SS-3-12 0.963 54.70 54.89 1.00
    SS-4-12 1.284 56.51 59.09 1.05
    Reference [18] SSL-1 0.590 14.48 24.18 1.67
    SSL-2 0.590 18.39 25.55 1.39
    SSM-1 1.200 24.83 40.63 1.63
    SSM-2 1.200 29.34 43.02 1.47
    SSM’-2 1.300 30.95 44.74 1.44
    SSH-1 1.600 31.80 44.74 1.44
    SSH-2 1.600 31.16 42.66 1.34
    SSH’-2 2.320 34.55 45.33 1.47
    Reference [32] SL-2 1.595 17.16 21.92 1.27
    SL-3 1.083 25.16 26.27 1.04
    SL-4 1.658 26.66 34.60 1.30
    Reference [33] BKW-1 1.141 36.71 43.56 1.19
    BKW-2 1.141 37.03 42.98 1.16
    Reference [34] SS 1.640 36.00 37.75 1.05
    Reference [35] Beam1 0.831 7.90 11.61 1.47
    Beam2 3.435 16.50 15.36 0.93
    Beam3 0.831 11.40 11.16 0.98
    Beam4 0.859 17.30 14.98 0.86
    Notes: Meu—Ultimate bearing capacity experimental value; Mcu—Ultimate bearing capacity calculation value.
    下载: 导出CSV
  • [1] 周济, 陈宗平, 陈宇良, 等. 潮汐区GFRP筋珊瑚海洋混凝土柱轴压性能试验及承载力计算[J]. 复合材料学报, 2022, 39(1): 344-360.

    Zhou Ji, Chen Zongping, Chen Yuliang, et al. Test on axial compression performance and bearing capacity calculation of GFRP bars reinforced coral aggregate marine concrete columns exposed to tidal area[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 344-360(in Chinese).

    [2] 王磊, 赵艳林, 吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土, 2012, (2): 99-100+113. DOI: 10.3969/j.issn.1002-3550.2012.02.031

    Wang Lei, Zhao Yanlin, Lv Haibo. Prospect on the properties and application situation of coral aggregate concrete[J]. Concrete, 2012, (2): 99-100+113(in Chinese). DOI: 10.3969/j.issn.1002-3550.2012.02.031

    [3] 达波, 余红发, 麻海燕, 等. 配筋率对全珊瑚海水钢筋混凝土梁受弯性能的影响[J]. 建筑结构学报, 2020, 41(6): 143-148.

    Da Bo, Yu Hongfa, Ma Haiyan, et al. Influence of reinforcement ratio to flexural behavior of coral aggregate reinforced concrete beam[J]. Journal of Building Structure, 2020, 41(6): 143-148(in Chinese).

    [4]

    Ma H, Da B, Yu H, et al. Research on flexural behavior of coral aggregate reinforced concrete beams[J]. China Ocean Engineering, 2018, 32: 593-604. DOI: 10.1007/s13344-018-0061-6

    [5]

    Chen Z, Pang Y, Zhou J, et al. Flexural Performance of Steel Bar Reinforced Sea Sand Concrete Beams Exposed to Tidal Environment[J]. Applied Sciences, 2022, 12(23): 12321. DOI: 10.3390/app122312321

    [6]

    Yuan F, Xiong Y, Li P, et al. Flexural behavior of seawater sea-sand coral aggregate concrete beams reinforced with FRP bars[J]. Journal of Composites for Construction, 2022, 26(6): 04022071. DOI: 10.1061/(ASCE)CC.1943-5614.0001264

    [7]

    Chen Z, Li S, Zhou J, et al. Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: Experimental and numerical study[J]. Construction and Building Materials, 2022, 349: 128784. DOI: 10.1016/j.conbuildmat.2022.128784

    [8]

    Wang Y, Liu C, Li Q, et al. Chloride ion concentration distribution characteristics within concrete covering-layer considering the reinforcement bar presence[J]. Ocean Engineering, 2019, 173: 608-616. DOI: 10.1016/j.oceaneng.2019.01.048

    [9]

    Yang L F, Cai R, Yu B. Investigation of computational model for surface chloride concentration of concrete in marine atmosphere zone[J]. Ocean Engineering, 2017, 138: 105-111. DOI: 10.1016/j.oceaneng.2017.04.024

    [10]

    Yu H, Da B, Ma H, et al. Durability of concrete structures in tropical atoll environment[J]. Ocean Engineering, 2017, 135: 1-10. DOI: 10.1016/j.oceaneng.2017.02.020

    [11]

    Calderon-Uriszar-Aldaca I, Briz E, Larrinaga P, et al. Bonding strength of stainless steel rebars in concretes exposed to marine environments[J]. Construction and Building Materials, 2018, 172: 125-133. DOI: 10.1016/j.conbuildmat.2018.03.156

    [12]

    Alonso M C, Luna F J, Criado M. Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration[J]. Construction and Building Materials, 2019, 199: 385-395. DOI: 10.1016/j.conbuildmat.2018.12.036

    [13]

    Bautista A, Paredes E C, Velasco F, et al. Corrugated stainless steels embedded in mortar for 9 years: Corrosion results of non-carbonated, chloride-contaminated samples[J]. Construction and Building Materials, 2015, 93: 350-359. DOI: 10.1016/j.conbuildmat.2015.04.060

    [14]

    Duarte R G, Castela A S, Neves R, et al. Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study[J]. Electrochimica Acta, 2014, 124: 218-224. DOI: 10.1016/j.electacta.2013.11.154

    [15] 张龙, 段文峰. S304不锈钢筋混凝土梁抗弯性能试验研究[J]. 吉林建筑大学学报, 2021, 38(5): 1-6. DOI: 10.3969/j.issn.1009-0185.2021.05.001

    Zhang Long, Duan Wenfeng. Experimental study on flexural behaviors of S304 Stainless steel reinforced concrete beams[J]. Journal of Jilin Jianzhu University, 2021, 38(5): 1-6(in Chinese). DOI: 10.3969/j.issn.1009-0185.2021.05.001

    [16] 孙晓燕, 王海龙, 于凤荣. 锈损不锈钢钢筋混凝土梁受弯性能退化试验研究[J]. 建筑结构学报, 2021, 42(06): 160-168.

    Sun Xiaoyan, Wang Hailong, Yu Fengrong. Experimental study on degradation of flexural performance of corroded stainless steel bars reinforced concrete beam[J] Journal of Building Structure, 2021, 42(06): 160-168(in Chinese).

    [17]

    Rabi M, Cashell K A, Shamass R. Flexural analysis and design of stainless steel reinforced concrete beams[J]. Engineering Structures, 2019, 198: 109432. DOI: 10.1016/j.engstruct.2019.109432

    [18]

    Ahmed K S, Habib M A, Asef M F. Flexural response of stainless steel reinforced concrete beam[J]. Structures, 2021, 34: 589-603. DOI: 10.1016/j.istruc.2021.08.019

    [19]

    Zhang Y, Lu X, Xu Y, et al. Corrosion performance of stainless steel reinforcement in the concrete prepared with seawater and coral waste and its ecological effects[J]. Journal of Renewable Materials, 2020, 8(5): 513-534. DOI: 10.32604/jrm.2020.09549

    [20]

    Yu H, Da B, Ma H, et al. Service life prediction of coral aggregate concrete structure under island reef environment[J]. Construction and Building Materials, 2020, 246: 118390. DOI: 10.1016/j.conbuildmat.2020.118390

    [21] 孙鹤溦. GFRP-不锈钢混合配筋海水海砂混凝土梁受弯性能研究[D]. 大连理工大学, 2023.

    Sun Hewei. Flexural Behavior of Seawater and Sea sand Concrete Beam Reinforced with Hybrid GFRP-Stainless Steel Bars[D]. Dalian University of Technology, 2023(in Chinese).

    [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).

    [23] 国家标准化管理委员会. 金属材料拉伸试验 第1部分: 室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Metallic materials——Tensile testing—Part 1: Method of test at room temperature: GB/T 228.1-2021[S]. Beijing: China Standards Press, 2021(in Chinese).

    [24] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: Beijing: China Architecture & Building Press, 2015(in Chinese).

    [25] 李承昌, 耿会涛, 李清富等. 不锈钢筋混凝土梁试验研究[J]. 公路交通科技(应用技术版), 2017, 13(1): 15-18.

    Li Chengchang, Geng Huitao, Li Qingfu, et al. Experimental study on stainless steel reinforced concrete beams[J]. Journal of Highway And Transportation Research And Development, 2017, 13(1): 15-18(in Chinese).

    [26] 陈宗平, 郑巍, 陈宇良. 高温后型钢再生混凝土梁的受力性能及承载力计算[J]. 土木工程学报, 2016, 49(2): 49-58.

    Chen Zongping, Zheng Wei, Chen Yuliang. Mechanical behavior and bearing capacity calculation of steel reinforced recycled concrete beam after experiencing high temperature[J]. China Civil Engineering Journal, 2016, 49(2): 49-58(in Chinese).

    [27]

    Building Code Requirements for Structural Concrete: ACI318—19 [S]. American Concrete Institute. Farminton Hills. Michigan. USA.

    [28]

    AS 3600: 2018: Concrete structures-Standards Australia[S]. Sydney: Standards Australia, 2018.

    [29] 李清富, 郭威, 匡一航. 基于连续强度法的不锈钢筋混凝土受弯构件承载力分析[J]. 应用基础与工程科学学报, 2022, 30(3): 554-565.

    Li Qingfu, Guo Wei, Kuang Yihang. Bearing Capacity Analysis of Stainless Steel Reinforced Concrete Flexural Members Based on Continuous Strength Method[J]. Journal of Basic Science and Engineering, 2022, 30(3): 554-565(in Chinese).

    [30] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12-2019[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).

    [31] 陈宇良, 李培泽, 陈宗平. 珊瑚海水海砂混凝土三轴力学性能[J]. 硅酸盐学报, 2023, 51(11): 2814-2823.

    Chen Yuliang, Li Peize, Chen Zongping. Triaxial Mechanical Properties of Coral Seawater Sea Sand Concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2814-2823(in Chinese).

    [32] 张国学, 徐永生, 丁舟. 不锈钢钢筋混凝土梁受弯性能的试验研究[J]. 铁道建筑, 2008, (2): 13-15. DOI: 10.3969/j.issn.1003-1995.2008.02.004

    Zhang Guoxue, Xu Yongsheng, Ding Zhou. Experimental Study on the Flexural Performance of Stainless Steel Reinforced Concrete Beams[J]. Railway Engineering, 2008, (2): 13-15(in Chinese). DOI: 10.3969/j.issn.1003-1995.2008.02.004

    [33] 张龙, 冷捷. 配置2304双相不锈钢筋混凝土梁受弯性能研究[J]. 建筑科学, 2022, 38(1): 85-92.

    Zhang Long, Leng Jie. Experimental study on flexural behaviors of 2304 duplex stainless steel reinforced concrete beam[J]. Building Science, 2022, 38(1): 85-92(in Chinese).

    [34]

    Alih S, Khelil A. Behavior of inoxydable steel and their performance as reinforcement bars in concrete beam: Experimental and nonlinear finite element analysis[J]. Construction and Building Materials, 2012, 37: 481-92. DOI: 10.1016/j.conbuildmat.2012.07.038

    [35]

    Medina E, Medina JM, Cobo A, Bastidas DM. Evaluation of mechanical and structural behavior of austenitic and duplex stainless steel reinforcements. Construction and Building Materials. 2015, 78: 1-7.

  • 期刊类型引用(2)

    1. 李滋阳,王思佳,邓文举. 陶瓷颗粒增强金属基复合材料研究进展. 轻工科技. 2021(04): 41-44 . 百度学术
    2. 陈亚楠,金云学,牛牧野,陈洪美,杜文栋. Ni_3Al(Cr)合金室温干滑动摩擦磨损性能研究. 江苏科技大学学报(自然科学版). 2019(05): 18-26 . 百度学术

    其他类型引用(4)

  • 其他相关附件

  • 目的 

    在近海及海洋工程建设中,充分利用海洋资源,将珊瑚骨料、海水、海砂制成海洋混凝土梁有利于解决由于远离陆地带来的材料短缺和运费高昂的难题。但珊瑚、海水、海砂中含量极高的氯离子极易导致普通钢筋锈蚀进而降低构件的承载能力,严重威胁近海及海洋工程结构的使用寿命。为有效解决使用珊瑚、海水、海砂所带来的钢筋腐蚀问题,利用不锈钢筋制成一种新型的耐腐蚀海洋混凝土构件“不锈钢筋珊瑚海水海砂混凝土梁”。对于混凝土梁构件,受弯性能是其发挥承载力的关键,为探究这种新型耐腐蚀梁构件的受弯性能,本文设计并制作了此类梁试件,进行静力加载试验,分析了受弯性能并提出承载力计算方法,以期为此类构件在近海及海洋混凝土结构中的应用提供研究基础。

    方法 

    试验以不同截面配筋率和钢筋种类(不锈钢筋与普通钢筋)为变化参数,设计并制作了7根不锈钢筋珊瑚海水海砂混凝土梁试件与1根普通钢筋珊瑚海水海砂混凝土梁试件。其中混凝土全部采用水泥、珊瑚骨料、海水和海砂混合拌制。采用单调静力加载法对试件进行受力试验。加载过程中,重点观测梁的裂缝发展、破坏过程及破坏形态,并在加载过程中采集荷载值、位移计数值,记录开裂弯矩、峰值承载力。通过试验数据获取了弯矩-跨中挠度曲线以及关键性能指标。此外,采用国内外相关规范对试件的开裂弯矩进行计算,并与试验结果进行对比分析。基于简化的连续强度法和已有研究分析,提出不锈钢筋珊瑚海水海砂混凝土梁的受弯承载力计算公式。

    结果 

    试验过程中,8根试件的破坏形态主要表现为两种类型:混凝土压碎破坏和混凝土斜向破坏。提高配筋率可以延缓裂缝的发展速度,不锈钢筋梁的开裂弯矩与普通钢筋梁基本相同,开裂前期二者开裂速度相同,但在18kN·m之后不锈钢试件稍快于普通钢筋试件。在峰值承载力方面,随着截面配筋率的增加,不锈钢筋珊瑚海水海砂混凝土梁的峰值承载力逐渐提高,最大增幅达到51.23%;同时,初始刚度也随之增加,最大增幅为40.22%。与普通钢筋梁相比,不锈钢筋梁的峰值承载力高出69.08%,但初始刚度下降,降幅为17.53%。对比不同国家规范计算的开裂弯矩,结果显示采用国内规范方法计算得到的计算值与试验结果的吻合度最高。采用提出的不锈钢筋珊瑚海水海砂混凝土梁的受弯承载力计算方法,计算得到的计算值与试验值的比值均值为0.98,吻合程度高。

    结论 

    采用不锈钢筋的珊瑚海水海砂混凝土梁比普通钢筋梁有着更高的受弯承载能力,截面配筋率对不锈钢筋梁的极限承载力有显著的影响,通过提高截面配筋率的方式可以提高极限承载力,但当配筋率过高时梁的破坏形态从混凝土受压破坏转变为斜向破坏。国内规范方法仍适用于计算开裂弯矩值,采用提出的计算方法计算不锈钢筋珊瑚海水海砂混凝土梁的极限承载力时具有较高精度。本试验的对象为短期内的不锈钢筋珊瑚海水海砂混凝土梁,短期内试件未腐蚀,对于此类新型耐腐蚀构件在严酷海洋环境内长期服役后的耐腐蚀性能及受弯性能,仍需后续研究。

  • 在近海及海洋工程建设中,为了解决由于远离陆地带来的材料短缺难题,可充分利用海洋资源,将珊瑚骨料、海水、海砂制成海洋混凝土梁。但珊瑚、海水、海砂中含量极高的氯离子极易导致普通钢筋锈蚀进而降低构件的承载能力,严重威胁海洋及近海工程结构的使用寿命。为有效解决使用珊瑚、海水、海砂所带来的钢筋腐蚀问题,利用不锈钢筋制成一种新型的耐腐蚀海洋混凝土构件“不锈钢筋珊瑚海水海砂混凝土梁”。

    对于混凝土梁构件,受弯性能是其发挥承载力的关键,为探究这种新型耐腐蚀梁构件的受弯性能,本文设计并制作了7个不锈钢筋珊瑚海水海砂混凝土梁试件和1个普通钢筋对比试件并进行静力加载试验。试验结果表明,提高不锈钢筋配筋率能够延缓裂缝发展的速度,不锈钢筋试件开裂弯矩与普通钢筋试件基本相同;配筋率的增加能够显著提升不锈钢筋珊瑚海水海砂混凝土梁的极限承载力,相同配筋率的不锈钢筋试件比普通钢筋试件极限承载力高出69.08%;利用国内现有规范计算得到开裂弯矩计算值与试验值吻合程度高;提出的极限承载力计算方法计算值与试验值吻合程度高。

    不锈钢筋试件最大裂缝宽度曲线

    筋材种类对极限承载力的影响

图(12)  /  表(6)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-11-12
  • 录用日期:  2024-11-24
  • 网络出版日期:  2024-12-08

目录

    /

    返回文章
    返回