多孔纳米碳纤维与炭黑复合载体负载Pt对氧还原反应活性和耐久性的影响

Effect of Pt supported on the hybrid of porous carbon nanofibers and carbon black on oxygen reduction reaction activity and durability

  • 摘要: 进一步提高Pt催化剂对氧还原反应(ORR)的催化活性和稳定性是促进质子交换膜燃料电池(PEMFC)商业化的关键。采用静电纺丝结合高温碳化的方法制备了直径约200 nm的多孔纳米碳纤维(PCNF),将其与炭黑(CB)混合作为Pt催化剂的复合载体,并使用乙二醇还原法制备了催化剂Pt/PCNF-CB,通过与商业Pt/C催化剂的对比,研究了Pt/PCNF-CB对ORR的催化活性与稳定性。当载体中CB含量为40%时,PCNF与CB能相互分散均匀,构建独特的三维贯通结构,以此混合载体制备的催化剂Pt/PCNF-CB-40在酸性电解液中表现出优良的ORR电催化活性,与Pt/C相比具有更高的起始电位(0.975 V)与半波电位(0.781 V)。同时,基于Pt/PCNF-CB-40的膜电极(MEA)表现出优良的输出性能,在铂载量较低的条件下其峰值功率密度高达599 mW·cm−2,较商业Pt/C催化剂提升19%,并且在加速应力测试(AST) (0.6 V和0.95 V)30 k次循环后最大功率密度仅损失21%,而商业Pt/C催化剂损失了41%,证明了PCNF与CB形成的复合载体对提高催化剂活性和稳定性具有积极作用。

     

    Abstract: Further improving the activity and stability of Pt catalysts for oxygen reduction reaction (ORR) is the key to promote the commercialization of proton exchange membrane fuel cells (PEMFCs). In this paper, porous carbon nanofibers (PCNF) with a diameter of about 200 nm were prepared by electrospinning and followed carbonization, which were mixed with carbon black (CB) as a hybrid support for Pt catalysts, and the catalysts Pt/PCNF-CB were prepared by means of ethylene glycol reduction method. The electrocatalytic activity and stability of Pt/PCNF-CB for ORR was investigated by comparing it with commercial Pt/C. When the CB content in the support was 40%, PCNF and CB could disperse uniformly to construct a unique three-dimensional through structure, and the Pt/PCNF-CB-40 prepared from this hybrid support shows excellent ORR electrocatalytic activity in acidic electrolyte with higher onset potential (0.975 V) and half-wave potential (0.781 V) compared with commercial Pt/C. Meanwhile, the Pt/PCNF-CB-40-based membrane electrode assembly (MEA) exhibits higher output performance with a peak power density of up to 599 mW·cm−2 at low Pt loading, which is a 19% improvement over the commercial Pt/C, and the maximum power density is only lost by 21% after 30 k of accelerated stress test (AST) (0.6 V-0.95 V), compared with the loss of the commercial Pt/C by 41%, demonstrating that the hybrid support formed by PCNF and CB has a positive effect on improving electrocatalytic activity and stability.

     

/

返回文章
返回