留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云母纳米片辅助制备芳纶纳米纤维增强复合薄膜力学性能与绝缘性能

李楠 陆赵情 汪洋 宁逗逗 闫宁 花莉 俄松峰

李楠, 陆赵情, 汪洋, 等. 云母纳米片辅助制备芳纶纳米纤维增强复合薄膜力学性能与绝缘性能[J]. 复合材料学报, 2024, 41(11): 5833-5841. doi: 10.13801/j.cnki.fhclxb.20240306.006
引用本文: 李楠, 陆赵情, 汪洋, 等. 云母纳米片辅助制备芳纶纳米纤维增强复合薄膜力学性能与绝缘性能[J]. 复合材料学报, 2024, 41(11): 5833-5841. doi: 10.13801/j.cnki.fhclxb.20240306.006
LI Nan, LU Zhaoqing, WANG Yang, et al. Mica nanosheets splitting of aramid fiber and enhanced mechanical and insulation performances of the composites nanofilms[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5833-5841. doi: 10.13801/j.cnki.fhclxb.20240306.006
Citation: LI Nan, LU Zhaoqing, WANG Yang, et al. Mica nanosheets splitting of aramid fiber and enhanced mechanical and insulation performances of the composites nanofilms[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5833-5841. doi: 10.13801/j.cnki.fhclxb.20240306.006

云母纳米片辅助制备芳纶纳米纤维增强复合薄膜力学性能与绝缘性能

doi: 10.13801/j.cnki.fhclxb.20240306.006
基金项目: 国家自然科学基金项目(22378248);陕西省自然科学基础研究计划资助项目(2022JQ-099);龙游县科学技术局重大科技攻关课题 (JHXM2022140)
详细信息
    通讯作者:

    陆赵情,博士,教授,博士生导师,研究方向为高性能纤维和纸基功能材料 E-mail:luzhaoqing302@163.com

  • 中图分类号: TQ342+.73;TB332

Mica nanosheets splitting of aramid fiber and enhanced mechanical and insulation performances of the composites nanofilms

Funds: National Natural Science Foundation of China (22378248); Natural Science Basic Research Program of Shaanxi (2022JQ-099); Longyou County Science and Technology Bureau Major Science Research (JHXM2022140)
  • 摘要: 芳纶纳米纤维 (ANF)兼具芳纶纤维轻质、高强高模、耐高温等特点及高性能纤维纳米尺度效应的双重优势,其薄膜强韧化受到研究者的广泛关注。本文采用高速机械球磨法制备云母纳米片 (MNSs) 作为增强体,将其引入芳纶纤维的裂解过程中,在二甲基亚砜/氢氧化钾 (DMSO/KOH) 体系中制备芳纶纳米纤维,通过真空辅助过滤法制备ANF/MNS复合薄膜,重点探究了MNS含量对ANF薄膜力学性能的影响。结果表明:当MNS含量为0.041wt% 时所制备的薄膜力学性能和绝缘性能均最佳,拉伸强度可达249.3 MPa、韧性36.7 MJ·m−3、介电击穿强度46.2 kV·mm−1,与原始ANF薄膜相比,分别提升了45.1%、197.1%和60.0%。纳米尺度的MNS可以与ANF形成强的界面相互作用,MNS的固有强度对纳米薄膜力学性能的提升也有重要贡献。

     

  • 图  1  云母纳米片(MNSs)及MNS/芳纶纳米纤维 (ANF) 复合薄膜的制备流程图

    DMSO—Dimethyl sulfoxide; PPTA—Poly(p-phenyl-p-phenylenediamine)

    Figure  1.  Schematic diagram of mica nanosheets (MNSs) and MNS/aramid nanofibers (ANF) composite films preparation process

    图  2  MNS ((a1), (a2))、ANF ((b1), (b2))和ANF/MNS ((c1), (c2))的TEM图像

    Figure  2.  TEM images of MNS ((a1), (a2)), ANF ((b1), (b2)) and ANF/MNS ((c1), (c2)) water dispersions

    图  3  ANF薄膜及不同MNS添加量MNS/ANF复合薄膜的 FTIR ((a), (b))、XRD (c)、紫外吸收(d)、紫外透过谱图(e)和水接触角(f)

    Figure  3.  FTIR ((a), (b)), XRD (c), UV absorption (d), UV-vis transmission (e) and water contact angles (f) of ANF films and MNS/ANF composite films with different MNS additions

    图  4  纯ANF薄膜及不同MNS添加量的ANF/MNS复合薄膜的力学性能:(a) 应力-应变曲线;(b) 拉伸强度;(c) 断裂伸长率; (d) 韧性图

    Figure  4.  Mechanical property of ANF and ANF/MNS composite films with different MNS dosages: (a) Stress-strain curves; (b) Tensile strength; (c) Elongation at break; (d) Toughness additions

    图  5  纯ANF薄膜及不同MNS添加量的MNS/ANF复合薄膜断裂截面和薄膜表面的SEM图像:((a1)~(a4)) ANF;((b1)~(b4)) ANF/MNS-I;((c1)~(c4)) ANF/MNS-II;((d1)~(d4)) ANF/MNS-III;((e1)~(e4)) ANF/MNS-IV

    Figure  5.  Cross-sectional and surface SEM images of pure ANF and ANF/MNS composite films with different MNS additions: ((a1)-(a4)) ANF; ((b1)-(b4)) ANF/MNS-I; ((c1)-(c4)) ANF/MNS-II; ((d1)-(d4)) ANF/MNS-III; ((e1)-(e4)) ANF/MNS-IV

    图  6  纯ANF薄膜及不同MNS添加量的MNS/ANF复合薄膜的绝缘性能:(a)介电常数;(b)介电损耗;(c) 由威布尔分布推导出的介电击穿失效概率;(d)介电击穿强度; (e) 绝缘电阻

    E—Dielectric breakdown strength of the material; E0—Characteristic dielectric breakdown strength

    Figure  6.  Insulation properties of pure ANF films and MNS/ANF composite films with different MNS additions: (a) Dielectric constant; (b) Dielectric loss; (c) Failure probability of dielectric breakdown deduced from the Weibull distribution; (d) Dielectric breakdown strength; (e) Insulation resistance

    图  7  ANF薄膜及不同MNS添加量的ANF/MNS复合薄膜的 热重分析曲线(a)及微分热重曲线(b)

    Figure  7.  TG (a) and DTG (b) curves of ANF films and ANF/MNS composite films with different MNS additions

    表  1  100 mL ANFs溶液中MNSs分散液和去离子水(DI)具体添加量

    Table  1.   Dosage of MNSs dispersion and deionized (DI) water in 100 mL ANFs solution

    Sample MNSs dispersions/μL DI water/μL MNSs/wt%
    ANF 0 1000 0
    ANF/MNS-I 200 800 0.020
    ANF/MNS-II 400 600 0.041
    ANF/MNS-III 600 400 0.061
    ANF/MNS-IV 800 200 0.082
    下载: 导出CSV
  • [1] 董志荣, 陈玥溪, 刘余田, 等. 对位芳纶纳米纤维用量对对位芳纶纸结构及性能的影响[J]. 中国造纸学报, 2022, 41(11): 11-17.

    DONG Zhirong, CHEN Yuexi, LIU Yutian, et al. Effect of the amount of para-aramid nanofiber on the structure and properties of para-aramid paper[J]. Transactions of China Pulp and Paper, 2022, 41(11): 11-17(in Chinese).
    [2] 彭锦荣, 谭英伟, 严玉蓉, 等. 芳香族聚酰胺纤维功能化改性[J]. 合成材料老化与应用, 2007, 36(2): 40-43. doi: 10.3969/j.issn.1671-5381.2007.02.010

    PENG Jinrong, TAN Yingwei, YAN Yurong, et al. The functionalization of aromatic polyamide fibers[J]. Synthetic Materials Aging and Application, 2007, 36(2): 40-43(in Chinese). doi: 10.3969/j.issn.1671-5381.2007.02.010
    [3] YANG B, WANG L, ZHANG M Y, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020, 30(22): 2000186. doi: 10.1002/adfm.202000186
    [4] YANG M, CAO K Q, SUI L, et al. Dispersions of aramid nanofibers: A new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954. doi: 10.1021/nn2014003
    [5] ZHANG B, WANG W C, TIAN M, et al. Preparation of aramid nanofiber and its application in polymer reinforcement: A review[J]. European Polymer Journal, 2020, 139: 109996. doi: 10.1016/j.eurpolymj.2020.109996
    [6] 耿博, 俄松峰, 马秦, 等. 芳纶纳米纤维/丝素蛋白复合薄膜的制备及其性能研究[J]. 陕西科技大学学报, 2022, 40(6): 9-17.

    GENG Bo, E Songfeng, MA Qin, et al. Study on preparation and properties of aramid nanofiber/silk fibroin composite films[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(6): 9-17(in Chinese).
    [7] 郭子瞻, 贾峰峰, 董佳玥, 等. 炭黑/芳纶沉析/碳纤维纸的制备及电热性能分析[J]. 中国造纸学报, 2022, 41(9): 1-10.

    GUO Zizhan, JIA Fengfeng, DONG Jiayue, et al. Fabrication and analysis of electric heating property of carbon black/aramid fibrid/carbon fiber-based paper[J]. Transactions of China Pulp and Paper, 2022, 41(9): 1-10(in Chinese).
    [8] LU Z Q, SI L M, DANG W B, et al. Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 321-330. doi: 10.1016/j.compositesa.2018.10.009
    [9] HYUN C K, HENRY A S. Ultra-high toughness fibers using controlled disorder of assembled aramid nanofibers[J]. Advanced Functional Materials, 2023, 33(4): 202208661.
    [10] LU Z Q, GENG B, MA Q, et al. Polymer induced strengthening and toughening of aramid nanofiber film: The importance of densification and hydrogen bonding[J]. Applied Surface Science‌, 2023, 607: 155045. doi: 10.1016/j.apsusc.2022.155045
    [11] E S F, MA Q, HUANG J Z, et al. Polyvinyl alcohol-mediated splitting of Kevlar fibers and superior mechanical performances of the subsequently assembled nanopapers[J]. Nanoscale, 2021, 13(43): 18201-18209. doi: 10.1039/D1NR05362K
    [12] LU Z Q, MA Q, E S F, et al. Robust aramid nanopaper based on the uniform wrap of sodium alginate on the surface of nanofibers[J]. Journal of Materials Science, 2022, 57(2): 1111-1122. doi: 10.1007/s10853-021-06620-8
    [13] ZHU J Q, CAO W X, YUE M L, et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites[J]. ACS Nano, 2015, 9(3): 2489-2501. doi: 10.1021/nn504927e
    [14] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688-697. doi: 10.1021/acsnano.9b07459
    [15] LIN M Y, LI Y H, XU K, et al. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets[J]. Composites Science and Technology, 2019, 175: 85-91. doi: 10.1016/j.compscitech.2019.02.006
    [16] FAN J C, SHI Z X, TIAN M, et al. Graphene-aramid nanofiber nanocomposite paper with high mechanical and electrical performance[J]. RSC Advances, 2013, 3(39): 17664-17667. doi: 10.1039/c3ra42515k
    [17] WU Y D, WANG F, LI X L, et al. Fabrication of a graphene oxide/nanoscale aramid fiber composite membrane with improved hydrophilicity and mechanical strength via a fast-drying method using absolute ethanol as proton donor[J]. Journal of Materials Science, 2018, 53(24): 16383-16392. doi: 10.1007/s10853-018-2798-y
    [18] ZHANG Z, YANG S, ZHANG P P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nature Communications, 2019, 10: 2920. doi: 10.1038/s41467-019-10885-8
    [19] 解原, 汪灵. 白云母类矿物在绝缘材料中的应用现状与开发利用建议[J]. 中国非金属矿工业导刊, 2004(6): 10-14.

    XIE Yuan, WANG Ling. Application status of Muscovite minerals in insulating materials and suggestions for development and utilization[J]. China Non-metallic Minerals Industry, 2004(6): 10-14(in Chinese).
    [20] 张美云, 袁世波, 宋顺喜, 等. 云母粒径对芳纶云母纸基绝缘材料性能的影响[J]. 陕西科技大学学报, 2018, 36(6): 6-12. doi: 10.3969/j.issn.1000-5811.2018.06.002

    ZHANG Meiyun, YUAN Shibo, SONG Shunxi, et al. Influence of particle size on the properties of aramid mica paper-based insulation materials[J]. Journal of Shaanxi University of Science & Technology, 2018, 36(6): 6-12(in Chinese). doi: 10.3969/j.issn.1000-5811.2018.06.002
    [21] 张小伟. 高性能复合云母纸的制造技术及增强机制的研究[D]. 武汉: 武汉理工大学, 2011.

    ZHANG Xiaowei. Technology of producing high performance mica paper composite and research of its enhancement mechanism[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese).
    [22] 王腊梅. 芳纶纤维/云母混合制备芳纶云母纸及其纸张性能研究[D]. 陕西: 陕西科技大学, 2017.

    WANG Lamei. Study on the manufacture of aramid-mica paper and its properties by mixing aramid fiber and mica[D]. Shaanxi: Shaanxi University of Science & Technology, 2017(in Chinese).
    [23] SCOTT P F, HILMAR K, LAWRENCE D, et al. Nanolaminates: Increasing dielectric breakdown strength of composites[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1388-1396. doi: 10.1021/am201650g
    [24] CHEN S S, SONG S X, LI Z J, et al. Constructing a BNNS/aramid nanofiber composite paper via thiolene click chemistry for improved thermal conductivity[J]. Materials Today Communications, 2022, 31: 103806. doi: 10.1016/j.mtcomm.2022.103806
    [25] LU Z Q, LI N, GENG B, et al. Solvent effects on the mechanical properties of aramid nanofibers film[J]. Chemical Physics Letters, 2022, 804: 139871. doi: 10.1016/j.cplett.2022.139871
    [26] E S F, MA Q, HUANG J Z, et al. Enhancing mechanical strength and toughness of aramid nanofibers by synergetic interactions of covalent and hydrogen bonding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106031.
    [27] E S F, MA Q, NING D D, et al. Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances[J]. Composites Science and Technology, 2021, 201: 108514. doi: 10.1016/j.compscitech.2020.108514
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  86
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-02-02
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回