压电电子复合材料的催化抗菌机理与应用进展

Piezoelectronic composite materials for catalytic antibacterial applications: mechanisms and recent advances

  • 摘要: 细菌感染对公共健康与临床治疗构成重大挑战。基于纳米催化的抗菌技术能够催化产生活性氧,从而实现广谱抗菌并降低耐药性风险。本文综述了压电电子效应增强催化抗菌的研究进展,包括压电催化、压电光催化及压电纳米酶体系。研究表明,压电材料在机械应力或超声激发下可显著提高对常见致病菌的灭活效率。此外,将压电效应与光催化或纳米酶协同应用,通过界面极化、电荷协同迁移及能带匹配,可显著增强电子–空穴分离效率,提升活性氧生成量,从而进一步提高抗菌性能。在实际应用中,压电增强催化材料已在创面治疗、抗菌织物、水体消毒及骨植入物防感染等领域显示出优异性能。综上,压电电子效应能够显著提升纳米材料的催化抗菌活性,实现自驱动、绿色、高效的杀菌效果,为临床感染防控和环境净化提供创新的技术策略。

     

    Abstract: Bacterial infections pose significant challenges to public health and clinical treatment. Nanocatalysis-based antibacterial strategies can generate reactive oxygen species (ROS), achieving broad-spectrum antibacterial activity while reducing the risk of drug resistance. This review summarizes the research progress of piezotronic effect-enhanced catalytic antibacterial systems, including piezocatalysis, piezo-photocatalysis, and piezo-nanozyme platforms. Studies show that piezoelectric materials under mechanical stress or ultrasonic stimulation can significantly improve inactivation efficiency against common pathogenic bacteria. Furthermore, the integration of piezotronic effects with photocatalysis or nanozymes can markedly enhance electron–hole separation efficiency and ROS generation through interfacial polarization, charge synergistic migration, and energy band alignment, thereby further improving antibacterial performance. In practical applications, piezo-enhanced catalytic materials have demonstrated excellent performance in wound treatment, antibacterial fabrics, water disinfection, and infection prevention of bone implants. Overall, piezotronic effects can significantly enhance the catalytic antibacterial activity of nanomaterials, enabling self-driven, green, and efficient sterilization, and providing innovative strategies for clinical infection control and environmental purification.

     

/

返回文章
返回