锰、磷共掺杂玉米秸秆生物炭活化过一硫酸盐降解诺氟沙星

Manganese and phosphorusco-doped corn stover biochar to activate peroxymonosulfate for degradation of norfloxacin

  • 摘要: 抗生素的大规模使用对自然环境及人类健康造成极大威胁,因此急需探寻一种高效、绿色的降解方法。本研究制备了Mn、P掺杂玉米秸秆生物炭(Mn/P-C)用于活化过一硫酸盐(PMS)降解诺氟沙星(NOR)。对比纯生物炭(BC)、P掺杂生物炭(P-C),Mn/P-C具有更大的缺陷结构及丰富的表面含氧官能团。在pH为2.84、PMS为3 mmol/L、催化剂投加量为1 g/L的条件下,80 min反应时间内,NOR去除率达到94%,体系降解反应速率为0.034 min−1。催化剂表征、淬灭实验和电子顺磁共振(EPR)实验表明,在Mn/P-C活化PMS体系中,NOR主要通过SO4•−、O2•−自由基以及催化剂表面产生的1O2非自由基途径得到降解。此外,Mn/P-C在较宽的pH范围内均有效,并且具有较高的可重复利用性和稳定性,由于其良好的磁性,不会对环境造成二次污染。本研究证实了掺杂Mn、P可以有效提高生物炭活化PMS降解NOR的效能,为碳基材料的优化以及其在过硫酸盐活化中的应用提供了新的思路。

     

    Abstract: The large-scale use of antibiotics poses a significant threat to the natural environment and human health, so there is an urgent need to explore an efficient and green degradation method. In this study, Mn, P-doped corn stover biochar (Mn/P-C) was prepared for the degradation of norfloxacin (NOR) by activated permonosulfate (PMS). Compared with pure biochar BC, P-doped biochar (P-C), Mn/P-C has a larger defect structure and abundant surface oxygen-containing functional groups. Under the conditions of pH 2.84, PMS 3 mmol/L, and catalyst dosing 1 g/L, the NOR removal reached 94% within 80 min reaction time, and the degradation reaction rate of the system was 0.034 min−1. The catalyst characterization, quenching experiments, and electron paramagnetic resonance (EPR) experiments demonstrated that, in the Mn/P-C-activated PMS system, the NOR was mainly removed via SO4•− and O2•−radicals as well as the 1O2 non-radical pathway generated on the catalyst surface were degraded. In addition, Mn/P-C is effective in a wide pH range, has high reusability and stability, and does not cause secondary pollution to the environment due to its good magnetic properties. This study confirms that doping Mn and P can effectively improve the efficacy of biochar-activated PMS for NOR degradation, which provides a new idea for the optimization of carbon-based materials as well as their application in persulfate activation.

     

/

返回文章
返回