FDM增材制造BST/PVDF-ABS复合材料的正交实验研究

Orthogonal experimental study of FDM additive manufacturing of BST/PVDF-ABS composites

  • 摘要: 钛酸锶钡(BST)/聚偏氟乙烯(PVDF)基功能复合材料因其出色的介电可调性和机械加工特性而引起了学者的广泛关注。然而通过传统工艺制备BST/PVDF复合材料难以成型复杂形状,极大限制了其应用。本文采用熔融沉积增材制造工艺(FDM)制备BST/PVDF-丙烯腈-丁二烯-苯乙烯三元共聚物(ABS)复合材料,通过正交实验设计探究工艺参数对材料体积变化率、密度、介电性能和力学性能的影响,结果表明打印温度高于240℃后,尺寸稳定性变差,相对密度减小,工艺参数的重要度依次:打印温度>平台温度>打印速度,当打印温度为240℃、平台温度为100℃、打印速度为30 mm/s时,BST/PVDF-ABS复合材料具有最佳介电性能和力学性能,其介电常数为11.20,介电损耗为0.0138,抗拉强度为35.03 MPa。本文阐明了打印参数对介电性能的影响机理,丰富了陶瓷/聚合物功能复合材料的制备工艺技术,为设计和制备结构-功能一体化器件提供了技术基础。

     

    Abstract: Barium-strontium titanate(BST)/Polyvinylidene fluoride(PVDF)-based functional composites have attracted extensive attention due to their excellent dielectric tunability and machinability properties. However, it is difficult for BST/PVDF composites to form complex shapes by traditional processes, which greatly limits their application. In this paper, BST/PVDF-Acrylonitrile butadiene styrene ternary copolymer(ABS)composites were prepared by Fused Deposition Modeling (FDM) additive manufacturing method, and the influence of process parameters on the volume change rate, density, dielectric and mechanical properties of the materials was explored through orthogonal experimental design. The results showed that when the printing temperature is higher than 240°C, the dimensional stability deteriorates and the relative density decreases, and the importance of process parameters was in the order of printing temperature> platform temperature > printing speed. It was found that, under the optimized FDM processing parameters with the printing temperature of 240°C, the platform temperature of 100°C and the printing speed of 30 mm/s, BST/PVDF-ABS composite has the best dielectric and mechanical properties, with the dielectric constant of 11.20, the dielectric loss of 0.0138 and the tensile strength of 35.03 MPa. This paper elucidates the mechanism of the influence of printing parameters on dielectric properties, enriches the preparation process technology of ceramic/polymer functional composite materials, and provides a technical basis for the design and preparation of structure-function integrated devices.

     

/

返回文章
返回