Processing math: 100%

体外预应力纤维增强树脂基复合材料(FRP)筋混凝土结构研究进展

  , AA

, AA. 体外预应力纤维增强树脂基复合材料(FRP)筋混凝土结构研究进展[J]. 复合材料学报, 2021, 0(0): 1-17.
引用本文: , AA. 体外预应力纤维增强树脂基复合材料(FRP)筋混凝土结构研究进展[J]. 复合材料学报, 2021, 0(0): 1-17.
   , A A. A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons[J]. Acta Materiae Compositae Sinica.
Citation:    , A A. A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons[J]. Acta Materiae Compositae Sinica.

体外预应力纤维增强树脂基复合材料(FRP)筋混凝土结构研究进展

基金项目: 国家自然科学基金(基金号)
详细信息
    通讯作者:

    姓 名,学历,职称,硕士生/博士生导师,研究方向为…… E-mail: ……

  • 中图分类号: TU599

A review of the studies on concrete structures prestressed with external fiber reinforced polymer (FRP) tendons

  • 摘要: 本文从纤维增强树脂基复合材料(FRP)筋、关键技术和构件三个主要方面综述了体外预应力FRP筋混凝土结构的研究成果:①介绍了预应力FRP筋拉伸性能和长期性能,给出了面向设计的FRP筋蠕变断裂应力值、松弛率以及疲劳最大应力和应力幅限值。②阐述了预应力FRP筋三种主要锚固技术的优缺点和减小锚固端应力集中的方法,重点介绍了近年来新开发的复合材料夹片锚具,其锚固效率系数高于90%;同时,基于转向FRP筋力学性能试验结果,建议转向半径不宜小于FRP筋半径的200倍,转向角度不宜大于5°。③梳理了体外预应力FRP筋混凝土构件的试验研究结果(单调加载、长期持荷和循环加载),介绍了国内外规范中的设计方法,并基于既有文献中42根梁的试验结果评价了规范中计算方法的精度,验证了我国规范GB 50608—2020中体外预应力FRP筋混凝土结构设计计算方法的准确性。本综述将对体外预应力FRP筋混凝土结构的推广应用起到积极推动作用。
    Abstract: The studies on concrete structures prestressed with external FRP tendons are reviewed in the aspects of FRP tendon, key technology and structural component, in this review. Firstly, the tensile properties and long-term behaviors of FRP tendon are introduced. The design-oriented values of creep-rupture stress, relaxation rate and the limits of maximum fatigue stress and fatigue stress range are provided. Secondly, the advantages and deficiencies of three main types of anchor for FRP tendon, and the methods of reducing the stress concentration on FRP tendon at anchor are elaborated. The newly-developed composite-wedge anchor is emphasized, which possesses an anchor efficiency coefficient exceeding 90%. Meanwhile, the deviation radius is recommended to be larger than 200 times of the radius the cross-section of FRP tendons, and the deviation angle of FRP tendons should not exceed 5°, based on the experimental results on the mechanical properties of deviated FRP tendons. Thirdly, the experimental results of concrete beams prestressed with external FRP tendons are reviewed, including monotonic loading, sustained loading and cyclic loading. The design methodologies in the codes at home and overseas are introduced. The accuracies of the calculating methods in the codes are evaluated using the experimental data of forty-two beams, and the methods in the Chinese code GB 50608—2020 are validated to be accurate in the design calculation for concrete structures prestressed with external FRP tendons. This paper is expected to actively promote the popularization and application of concrete structures prestressed with external FRP tendons.
  • 近年来,随着经济的快速发展,工业化污染严重导致各类细菌滋生和传播,由细菌感染引发的伤口感染、人体炎症、伤寒等症状一直威胁着人类健康[1]。致病性细菌感染可通过飞沫、接触及气溶胶进行快速传播,存在很大的感染风险。目前,由革兰氏菌引起的传染病是全球几大健康问题之一[2-3],但使用抗生素治疗细菌感染存在诸多不足,例如,细菌耐药性及多药外排泵作用等[4-5]。为克服细菌耐药性等缺点,多种新型抑菌材料不断被开发出来,但多数材料的抑菌效果不佳[6],某些材料还需要复杂的表面改性才能实现抑菌功能[7-8],因此,开发高性能的抑菌材料并研究其抑菌机制,解决细菌耐药性具有重要的应用价值。通过研究发现,金属有机骨架材料与细菌之间可通过范德华力、静电相互作用导致细菌死亡,也不会使细菌基因发生突变而产生耐药性,表现出良好的抑菌性能[9]

    金属-有机骨架(Metal-organic framework,MOF)是由金属离子或离子簇与有机配体配位组成的多孔纳米材料[10],在吸附分离[11]、气体储存[12]、药物分子输送[13]和化学催化[14]等方面备受青睐。通过有机配体与作为节点的金属离子或离子簇配位,MOF材料可以制备具有预期的结构,并实现其结构的功能化,同时也因其缓慢的释放能力、高比表面积和大孔隙率等优势逐渐成为一种新的载体[15]。近年来,基于MOF结构为载体的材料已经成为抑菌应用的一个热点[16-19]。UiO-66-NH2是以Zr6O4(OH)4簇为金属节点,2-氨基对苯二甲酸为配体,形成的具有三维立体骨架八面体结构的材料[20-23]。UiO-66-NH2材料不仅具有低毒性、高耐水性和良好的结构稳定性[24],而且结构中的氨基可以作为反应位点进一步功能化[25],因此可以将UiO-66-NH2材料作为理想的载体,进一步功能化改性后,用于抗菌方面的研究。

    基于此,本文通过水热法合成了锆基MOF材料UiO-66-NH2,将多孔UiO-66-NH2作为可再生载体,以亚氯酸钠为活性氯来源,通过后合成改性的方法,使活性氯原子与骨架中的氨基官能团形成一种氯胺基团,合成了UiO-66-NHCl新型复合抑菌材料,采用XRD、FTIR、SEM、TEM、EDS和XPS等手段对UiO-66-NHCl复合材料进行表征,同时探索了不同负载工艺对氯负载量的影响,并研究了UiO-66-NHCl复合材料的抑菌性能。结果显示,UiO-66-NHCl对革兰氏阳性菌和革兰氏阴性菌的广谱灭活具有快速而有效的作用,在抑菌方面表现出优异的性能。

    四氯化锆(ZrCl4)、2-氨基-1, 4-苯二甲酸(NH2-BDC)、亚氯酸钠,上海麦克林生化科技有限公司;碘化钾,天津市科密欧化学试剂有限公司;硫代硫酸钠、淀粉、N, N-二甲基甲酰胺(DMF)、无水甲醇,天津市永大化学试剂有限公司;重铬酸钾,莱阳市康德化工有限公司;大肠杆菌、金黄色葡萄球菌,北京生物保藏生物科技有限公司;蛋白胨、牛肉膏、琼脂粉,天津市英博生化试剂有限公司。

    将ZrCl4 (4.5 mmol)和NH2-BDC (6.4 mmol)溶于DMF (40 mL),超声搅拌20 min,随后将冰醋酸(HAc,0.3 mmol)加到上述悬浮液,继续超声搅拌20 min。将搅拌后的悬浮液转移到不锈钢高压釜(100 mL),在135℃下反应24 h。将产物冷却至室温,再用DMF和无水甲醇洗涤离心数次,最后将产物在80℃真空干燥8 h。

    将一定质量的UiO-66-NH2材料,置于亚氯酸钠溶液(pH=5)中,避光搅拌4 h,抽滤,收集固体产物,产物用无水乙醇洗涤3次,以去除氯化后材料表面的杂质,产物在40℃下真空干燥12 h,得到UiO-66-NHCl复合材料。在保证其他条件不变的情况下,采用单一因素法设置不同氯负载比例(质量比m(UiO-66-NH2)∶m(NaClO2))和氯化时间(0.5 h、2 h、4 h、6 h),浸渍抽滤后,滤液用碘量滴定法测定有效氯的含量。氯负载量的计算公式如下所示:

    =m0mfmads×100% (1)

    式中:m0为初始亚氯酸钠的质量(g);mf为上清液中亚氯酸钠的质量(g);mads为UiO-66-NH2的质量(g)。

    采用亚氯酸钠溶液浸渍改性合成了UiO-66-NHCl新型复合抑菌材料,通过碘钾氧化实验验证UiO-66-NHCl复合材料中活性氯的存在,用滴定法加入硫代硫酸钠溶液滴定来计算氯的含量。有效氯含量计算公式如下所示:

    Cl(%)=CV×35.45×100W×2 (2)

    式中:C为硫代硫酸钠滴定液浓度(0.01 mol/L);V为消耗硫代硫酸钠滴定液体积(mL);W为MOF复合材料的质量(g)。

    在储存过程中,氯的释放会降低材料的杀菌效果,因此探究UiO-66-NHCl复合材料在高温、高湿和强光等条件下密封储存30天后的稳定性,通过碘量滴定法测UiO-66-NHCl复合材料中活性氯的含量,通过抑菌实验直观表现UiO-66-NHCl的杀菌效果。

    高温实验是设定条件温度为60℃,每5 天取样,测量30天内UiO-66-NHCl材料中活性氯的含量。高湿和强光实验分别设定条件温度为25℃,湿度为75%;光照强度为4500 lx,其他步骤同上。

    根据《消毒技术规范》(2002年版)[26]配制Luria-Bertani (LB)液体培养基、LB固体培养基和相应的菌悬液。采用抑菌圈法对UiO-66-NHCl的抑菌性能进行评价。配制不同浓度的UiO-66-NHCl复合材料,将菌悬液均匀涂布在含有培养基的平板上。用移液枪吸取20 μL不同浓度的样品,滴加到灭菌后滤纸片的表面,对照滤纸片滴加20 μL浓度为0.9%的生理盐水,将平板倒置在37℃电热恒温培养箱(DPH 9402,上海一恒科学仪器有限公司)培养12~16 h后,观察结果,记录抑菌圈直径的大小。

    根据《消毒技术规范》(2002年版)[26]对选用的新西兰兔进行完整和破损皮肤刺激性实验,采用同体左右侧自身对比法,即每只新西兰兔左侧去毛区域涂抹生理盐水做对照,右侧去毛区域涂抹UiO-66-NHCl抑菌材料。给药4 h后清洁,每天对新西兰兔给药1次,连续给药7天。观察新西兰兔是否正常,并记录是否出现红斑和水肿情况。表1为皮肤刺激性反应评分标准。

    表  1  皮肤刺激性反应评分标准
    Table  1.  Skin irritation response scoring criteria
    ErythemaScoreEdemaScore
    No0No0
    Mildly (barely visible)1Mildly (barely visible)1
    Moderately (clearly visible)2Moderately (visible bulge)2
    Severely3Severely (skin augmentation of 1 mm, clear contours)3
    下载: 导出CSV 
    | 显示表格

    采用浸渍键合的方法合成UiO-66-NHCl材料,探究不同的氯负载比例与氯化时间对UiO-66-NHCl材料合成的影响,并计算氯负载量。如表2所示,在氯负载比例为1∶5时,氯负载量最高,氯负载比例为1∶9时次之。图1(a)为不同氯负载比例的UiO-66-NHCl的XRD图谱(D/MAX-2500 型X 射线衍射仪,日本Rigaku公司),可知,1-3组材料的XRD图谱与模拟的UiO-66-NH2的XRD图谱基本一致,说明UiO-66-NHCl的晶体结构并未发生改变,而当氯负载比例为1∶9 (4组)时,其XRD图谱中并未出现材料的特征峰,表明材料未成功合成。选取氯负载比例为1∶5的条件下对氯化时间进行探究,当氯化时间为4 h时,材料的氯负载量最高,且随着氯化时间的增加,材料的结晶度下降,如图1(b)所示。

    表  2  活性氯负载比例与氯化时间对氯负载量的影响
    Table  2.  Effect of active chlorine loading ratio and chlorination time on chlorine loading
    No.Chlorine
    load ratio
    Chlorination
    time/h
    Chlorine
    loading/wt%
    11∶346.65
    21∶549.35
    31∶747.12
    41∶949.04
    51∶50.54.85
    61∶528.40
    71∶549.11
    81∶568.54
    下载: 导出CSV 
    | 显示表格

    采用S-4800-I 型场发射扫描电子显微镜(日本HITACHI 公司)对不同氯负载比例和氯化时间所制备材料进行形貌分析,其SEM图像如图2所示,氯负载比例在1∶7范围内,材料均表现为均匀的颗粒,呈现出八面体结构,氯负载比例在1∶9时,材料发生团聚,结晶度低,此时八面体结构已被破坏,这点可以从图1(a)样品的XRD图谱中看出;而随着氯化时间的增加,材料逐渐开始团聚,但颗粒形态仍保持八面体结构。

    图  1  UiO-66-NH2和UiO-66-NHCl的XRD图谱:(a) 不同氯负载比例;(b) 不同氯化时间
    Figure  1.  XRD patterns of UiO-66-NH2和UiO-66-NHCl: (a) Different chlorine loading ratios; (b) Different chlorination time
    图  2  UiO-66-NH2/NaClO2的SEM图像:((a)~(d)) 负载比例分别为1∶3、1∶5、1∶7、1∶9;((e)~(h)) 氯化时间分别为0.5 h、2 h、4 h、6 h
    Figure  2.  SEM images of UiO-66-NH2/NaClO2: ((a)-(d)) Loading ratios of 1∶3, 1∶5, 1∶7, 1∶9; ((e)-(h)) Chlorination time of 0.5 h, 2 h, 4 h, 6 h, respectively

    通过碘量滴定法测定UiO-66-NHCl中有效氯的含量。从图3中(左)可以看出,未经氯化处理的 UiO-66-NH2材料在加入碘化钾溶液后,溶液没有发生任何颜色变化,而将UiO-66-NH-Cl复合材料与碘化钾溶液混合后,清澈的无色溶液立即变成棕色,这是由于溶液中碘离子被活性氯胺(N—Cl)氧化,碘被释放出来,颜色变为棕色,证明所制备的UiO-66-NHCl复合材料中含有N—Cl结构。反应式如式(3)所示。

    图  3  UiO-66-NH2加KI溶液(左);UiO-66-NHCl加KI溶液(中);UiO-66-NHCl加KI溶液后滴定(右)
    Figure  3.  KI solution added to UiO-66-NH2 (left); KI solution added to UiO-66-NHCl (middle); KI solution added to UiO-66-NHCl after titration (right)
    NCl+2I+H+NH+I2+Cl (3)
    I2+2S2O232I+S4O26 (4)

    通过碘量滴定法测定UiO-66-NHCl中有效氯的含量,从图3中(右)可以看出,滴定硫代硫酸钠溶液后,颜色由棕色变为无色,这是由于所生成的碘单质与硫代硫酸根离子反应,再变为碘离子,反应式如式(4)所示。

    图4为UiO-66-NH2和UiO-66-NHCl的XRD图谱,可见,在2θ=7.4°、8.5°、25.7°等处出现的衍射峰,与模拟UiO-66-NH2的出峰位置相吻合,表明成功合成了UiO-66-NH2[27];同时,UiO-66-NHCl的衍射峰和UiO-66-NH2的基本保持一致,表明UiO-66-NH2的晶体结构在引入活性氯后未发生变化,结构保持较好。

    图  4  UiO-66-NH2和UiO-66-NHCl的XRD图谱
    Figure  4.  XRD patterns of UiO-66-NH2 and UiO-66-NHCl

    采用FTS-65A1896型傅里叶红外光谱(美国铂金埃尔默公司)对UiO-66-NH2和UiO-66-NHCl进行红外光谱分析,如图5所示。在660~680 cm−1和460~480 cm−1处分别为μ3—O和μ3—OH基团的拉伸振动[28],UiO-66-NH2存在553 cm−1处的峰对应Zr—(OC)的不对称拉伸振动,1610~1550 cm−1和1420~1335 cm−1分别对应有机配体中O—C—O的对称和不对称伸缩振动。此外,1255 cm−1处表现为芳香胺特有的C—N键拉伸振动,1507 cm−1处的峰是由H2-BDC中C=C键振动引起的,而1661 cm−1处的峰是由于材料孔内残余的DMF或丙酮的C=O键的拉伸振动。在3270 cm−1和3309 cm−1处为—NH2官能团特有的伯胺基团的双吸收峰,表明UiO-66-NH2材料成功合成[29]。UiO-66-NHCl复合材料红外图谱显示,负载活性氯后,在3290 cm−1处出现仲胺基团的单峰,原始材料的氨基官能团的双峰消失[30],表明UiO-66-NH2材料氨基上的氢已成功被活性氯取代,成功制备出UiO-66-NHCl复合材料。

    图  5  UiO-66-NH2和UiO-66-NHCl的FTIR图谱
    Figure  5.  FTIR spectra of UiO-66-NH2 and UiO-66-NHCl

    (1) 微观形貌分析

    原始UiO-66-NH2材料的SEM图像如图6(a)~6(c)所示,可以看出所合成的UiO-66-NH2呈规则的八面体结构,这与文献[31]中所制备材料的形貌相符,表明材料成功合成,且UiO-66-NH2材料粒径大小较均一,粒径大约为300 nm。而通过活性氯改性的UiO-66-NHCl材料在负载活性氯后,材料的形貌没有发生太大变化,说明经活性氯改性后,不会影响UiO-66-NH2的结构(图6(d)~6(f))。采用JEM-2100型透射电子显微镜(德国电子有限公司)对UiO-66-NH2和UiO-66-NHCl进行形貌分析,其TEM图像如图7所示,所制备的UiO-66-NH2内部为实心结构,且在经活性氯改性后,UiO-66-NHCl材料的内部结构状态没有发生改变,表明氯的掺杂没有影响材料的晶体结构。

    图  6  UiO-66-NH2 ((a)~(c))和UiO-66-NHCl ((d)~(f))的SEM图像
    Figure  6.  SEM images of UiO-66-NH2 ((a)-(c)) and UiO-66-NHCl ((d)-(f))
    图  7  UiO-66-NH2 ((a)~(c))和UiO-66-NHCl ((d)~(f))的TEM图像
    Figure  7.  TEM images of UiO-66-NH2 ((a)-(c)) and UiO-66-NHCl ((d)-(f))

    (2)元素含量分析

    采用S-4800-I型X 射线能谱仪(日本HITACHI公司)对UiO-66-NH2和 UiO-66-NHCl进行元素分析,如图8所示,原始UiO-66-NH2材料含有C、N、O、Zr元素,表明材料已成功合成;经活性氯改性后,UiO-66-NHCl材料上有Cl元素的存在,进一步证明了活性氯已成功的被引入到UiO-66-NHCl材料中。

    (3) 元素价态分析

    图  8  UiO-66-NH2和UiO-66-NHCl的EDS元素分析((a), (b));UiO-66-NHCl的元素分布图像((c)~(f))
    Figure  8.  EDS elemental analysis of UiO-66-NH2 and UiO-66-NHCl ((a), (b)); Elemental distribution images of UiO-66-NHCl ((c)-(f))

    通过X射线光电子能谱仪(ESCALAB 250Xi,赛默飞世尔科技有限公司)分析UiO-66-NHCl中各个元素的元素组成和化学状态。图9(a)为UiO-66-NH2和UiO-66-NHCl的XPS总光谱对比图,可以看出,氯化后,在200 eV左右出现了明显的属于Cl元素的峰,399.8 eV处也出现了N元素的峰,表明Cl成功被引入到UiO-66-NH2中,与C、O和Zr元素的峰相比,Cl元素的峰较弱,也说明Cl的含量明显低于其他元素,这与EDS结果一致。在C1s图谱中(图9(b)):284.1、285.5和288.04 eV处的峰分别对应于:C—C键、C—O键和OH—C=O键,这些键归属于H2-BDC。O1图谱(图9(c))可分为3个峰:530.1 eV处的峰为Zr—O键,531.3 eV处的峰为表面活性氧物种C=O,而在532.6 eV处的峰可归因于H—O的化学吸附氧物种。如图9(d)所示,可以观察到Zr3d5/2和Zr3d3/2结合能的峰归属于Zr—O键,表明锆氧簇中Zr4+的存在[32]。在N1s高分辨图谱中(图9(e)),398.2、399.8和400.8 eV处的3个峰分别对应于吡啶氮、吡咯氮和石墨氮[33]。对Cl2p图谱(图9(f))分析,发现了Cl2p3/2 (199.8 eV)和Cl2p1/2(201.3 eV)的自旋-轨道分裂双态,这可能与N—Cl键的存在有很大的关系[34]

    图  9  (a) UiO-66-NH2和UiO-66-NHCl的XPS全谱图;(b) C1s;(c) O1s;(d) Zr3d;(e) N1s;(f) Cl2p
    Figure  9.  (a) Total XPS spectra of UiO-66-NH2 and UiO-66-NHCl; (b) C1s; (c) O1s; (d) Zr3d; (e) N1s; (f) Cl2p

    由于储存过程中氯的释放会降低材料的抑菌效果,因此研究了UiO-66-NHCl复合材料在高温、高湿和强光等条件下的稳定性。如图10所示,在高温60℃、高湿75%和强光4500 lx的因素下,30天后,测定了材料所负载的活性氯含量分别为原始氯负载量的82%、89.3%和81.2%。因此,UiO-66-NHCl复合材料在高温、高湿和强光条件下仍能保持较好的稳定性。表3为UiO-66-NHCl复合材料对金黄色葡萄球菌和大肠杆菌的抑菌圈直径。图11图12分别为UiO-66-NHCl复合材料对金黄色葡萄球菌和大肠杆菌的抑菌效果图。可以看出,随着稳定性实验天数的增加,抑菌圈直径虽在减小,但仍大于7 mm,表明在经过高温、高湿和强光实验后,材料仍能保持较好的抑菌效果。

    图  10  UiO-66-NHCl在不同条件下的稳定性实验结果
    Figure  10.  Experimental results on the stability of UiO-66-NHCl under different conditions
    表  3  UiO-66-NHCl复合材料在高温、高湿和强光条件下的抑菌圈直径的影响(标准差,±SD mm)
    Table  3.  Effect of UiO-66-NHCl composites on the diameter of the inhibition circle under high temperature, high humidity and strong light conditions (Standard deviation, ±SD mm)
    StrainsFactorsDiameter/mm
    0 d5 d10 d15 d20 d25 d30 d
    Staphylococcus aureusHigh temperature10.12±0.319.57±0.299.13±0.378.76±0.348.04±0.417.69±0.297.25±0.38
    High humidity10.33±0.289.88±0.349.32±0.148.94±0.258.25±0.187.91±0.437.63±0.36
    Bright light10.14±0.199.62±0.169.17±0.218.82±0.328.15±0.287.83±0.377.33±0.45
    Escherichia coliHigh temperature10.07±0.279.61±0.379.05±0.358.62±0.288.01±0.327.52±0.477.16±0.39
    High humidity10.21±0.249.82±0.299.14±0.368.77±0.358.19±0.277.74±0.427.33±0.32
    Bright light10.11±0.329.67±0.269.09±0.428.53±0.298.08±0.367.67±0.517.25±0.43
    下载: 导出CSV 
    | 显示表格
    图  11  UiO-66-NHCl复合材料对金黄色葡萄球菌的抑菌效果
    Figure  11.  Bacterial inhibition effect of UiO-66-NHCl composite against Staphylococcus aureus
    图  12  UiO-66-NHCl复合材料对大肠杆菌的抑菌效果
    Figure  12.  Bacterial inhibition effect of UiO-66-NHCl composites on Escherichia coli

    图13图14为不同浓度下UiO-66-NH2材料改性前后对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)的抑菌结果,表4为不同浓度下,UiO-66-NH2和UiO-66-NHCl对金黄色葡萄球菌和大肠杆菌抑菌圈直径。可以看出,氯化后的UiO-66-NHCl复合材料对金黄色葡萄球菌和大肠杆菌均有抑制作用;随着样品浓度的增加,抑菌圈直径也随之增加,抑菌作用也随之增强。相比之下,未氯化的UiO-66-NH2材料抑菌圈直径为0,没有表现出抑菌效果。

    图  13  UiO-66-NH2材料改性前后对金黄色葡萄球菌的抑菌结果影响
    Figure  13.  Effect of inhibition results of UiO-66-NH2 material on Staphylococcus aureus before and after modification
    图  14  UiO-66-NH2材料改性前后对大肠杆菌的抑菌结果影响
    Figure  14.  Effect of inhibition results of UiO-66-NH2 material on Escherichia coli before and after modification
    表  4  浓度对UiO-66-NHCl和UiO-66-NH2材料抑菌圈直径的影响对比(±SD mm)
    Table  4.  Comparison of the effect of concentration on the diameter of the inhibition circle of UiO-66-NHCl and UiO-66-NH2
    StrainsSampleDiameter/mm
    200 mg/L300 mg/L400 mg/L500 mg/L600 mg/L
    Staphylococcus aureusUiO-66-NHCl7.88±0.488.55±0.558.96±0.329.58±0.3210.03±0.41
    UiO-66-NH200000
    Escherichia coliUiO-66-NHCl7.94±0.518.27±0.438.73±0.239.21±0.189.98±0.34
    UiO-66-NH200000
    下载: 导出CSV 
    | 显示表格

    表5为UiO-66-NHCl复合材料多次给药皮肤刺激反应实验结果。结果表明,在连续多次给药后,实验组和对照组的皮肤给药部位均未出现红斑、水肿等情况,两者平均反应均值均为0分,因此该材料表现为无刺激性。

    表  5  UiO-66-NHCl多次给药皮肤刺激反应实验结果
    Table  5.  Experimental results of skin irritation response to multiple doses of UiO-66-NHCl
    Dosing time/dComplete skin group (Score)Damaged skin group (Score)
    UiO-66-NHClWaterUiO-66-NHClWater
    10000
    20000
    30000
    40000
    50000
    60000
    70000
    下载: 导出CSV 
    | 显示表格

    采用亚氯酸钠溶液对锆基金属-有机骨架材料UiO-66-NH2进行后合成改性,通过碘钾氧化实验、XRD、SEM、TEM、EDS和XPS等表征分析结果可知,成功制备了UiO-66-NHCl复合抑菌材料,稳定性、抑菌性和皮肤刺激性实验结论如下:

    (1) 在高温、高湿和强光条件下,UiO-66-NHCl的氯负载量分别为原始材料的82%、89.3%和81.2%,均能保持较好的稳定性;

    (2) 抑菌实验表明,与未氯化的UiO-66-NH2材料相比,氯化后的UiO-66-NHCl材料对大肠杆菌和金黄色葡萄球菌均有抑制作用,这是由于活性氯将位于UiO-66-NH2材料上的氨基官能团转化为活性N—Cl结构所导致;

    (3) 皮肤刺激性实验表明,氯化后的UiO-66-NHCl复合抑菌材料对皮肤无刺激性,可用于纺织纤维等防护服的应用。

  • 图  1   体外预应力纤维增强树脂基复合材料(FRP)筋混凝土结构示意图

    Figure  1.   Schematic diagram for a concrete structure prestressed with external fiber-reinforced polymer (FRP) tendons

    图  2   FRP筋蠕变松弛性能提升机制示意图[20]

    Figure  2.   Schematic diagram for the improvement mechanism of creep and relaxation behaviors of FRP tendons

    图  3   FRP筋内部初始弯曲纤维与预张拉后的拉直纤维[17]

    Figure  3.   Initial uneven fibers and straightened fibers after pretensioned in a FRP tendon

    图  4   图4 玄武岩纤维增强树脂基复合材料(BFRP)筋疲劳破坏机制[22]

    Figure  4.   Mechanism of the fatigue failure of basalt fiber reinforced polymer (BFRP) tendon

    图  5   FRP筋主要锚固形式

    Figure  5.   Main types of anchor of FRP tendons

    图  6   分段式复合材料夹片[38]

    Figure  6.   Segmented composite wedge

    图  7   图7 FRP筋转向区试验装置[39]

    Figure  7.   Test setup for FRP tendons at a deviator

    图  8   图8转向角度和转向半径对弯折FRP筋承载力保留率的影响[39]

    Figure  8.   Effects of deviation radius and angle on the loading capacity of FRP tendon at deviator

    图  9   体外预应力混凝土梁长期变形与预应力损失

    Figure  9.   Long-term deformation and prestress loss of RC beam prestressed with external tendon

    表  1   FRP筋、高强钢筋、钢绞线拉伸性能[8]

    Table  1   Tensile properties of FRP tendons, high-strength steel bar and steel strand

    Type of
    tendon
    Density/
    (g/cm3)
    Tensile
    strength/MPa
    Elastic
    modulus/GPa
    Elongation/
    %
    Longitudinal thermal
    expansivity/(10−6/℃)
    CFRP tendon 1.5 1500~2500 120~160 0.5~1.7 −2~0
    BFRP tendon 2.0 800~1800 50~60 1.6~3.0 6~8
    AFRP tendon 1.4 1000~2 000 40~120 1.9~4.4 −6~−2
    High-strength steel bar 7.85 490~700 200 >10 11.7
    Steel strand 7.85 1400~1 860 180~200 >4 11.7
    下载: 导出CSV

    表  2   FRP筋的蠕变断裂应力

    Table  2   Values of creep rupture stress of FRP tendons

    ReferenceCFRPAFRPBFRP
    Yamaguchi[9] 0.93fu 0.47fu /
    Ando[10] 0.79fu 0.66fu /
    Tokyo Rope[11] 0.85fu / /
    Shi et al.[12] / / 0.54fu
    Banibayat[13] / / 0.15fu
    ACI 440.1 R-15[14] 0.55fu 0.3fu
    ACI 440.4R-04[2] 0.70fu 0.55fu /
    fu is the tensile strength of FRP tendon.
    下载: 导出CSV

    表  3   FRP筋蠕变断裂应力建议值

    Table  3   Recommended values of the creep rupture stress of FRP tendons

    Type of tendonCFRPAFRPBFRP
    Creep rupture stress 0.70fu 0.55fu 0.54fu
    fu is the tensile strength of FRP tendon.
    下载: 导出CSV

    表  4   0.5fu初始应力下FRP筋百万小时松弛率预测值

    Table  4   Predictive values of the one-million-hour relaxation rates of FRP tendons at a 0.5fu initial level

    Type of tendonCFRPAFRPBFRP
    Relaxation rate 3.0% 10~13% 6.7%
    下载: 导出CSV

    表  5   FRP筋疲劳强度(括号中为对应的应力幅)

    Table  5   Values of the fatigue strength of FRP tendons (with the corresponding stress range in the brackets)

    ReferencesCFRPAFRPBFRP
    Saadatmanesh[23-24] 0.9fu (0.05fu) 0.5fu (0.025fu) /
    Adimi et al.[27] 0.35fu (0.21fu) / /
    El Refai[25,28] 0.5fu (0.1fu) / 0.39fu (0.04fu)
    Song et al.[29] 0.64fu (0.09fu)
    0.53fu (0.19fu)
    0.37fu (0.28fu)
    / /
    Xie et al.[30] 0.5fu (0.09fu) / /
    Zhuge et al.[31] 0.42fu (0.04fu) / /
    Zhang and Ou[32] 0.5fu (0.25fu) / /
    Odagiri et al.[33] / 0.54fu (0.05 fu) /
    Wang et al.[22] / / 0.6fu (0.05fu)
    Atutis et al.[34] / / 0.65fu (0.07fu)
    fu is the tensile strength of FRP tendon.
    下载: 导出CSV

    表  6   FRP筋主要锚具形式的优缺点

    Table  6   Advantages and deficiencies of the main types of anchor for FRP tendons

    Type of anchorAdvantagesDeficiencies
    Bond type No radial stress, hence inducing no decrease in strength of tendon Inconvenient grouting; prestress loss due to long-term creep deformation of the bonding material in anchor
    Friction type Radial stress is beneficial for the long-term
    behavior of anchor
    Inconvenient grouting
    Wedge type Convenient assembly Notch effect on FRP tendon
    下载: 导出CSV

    表  7   FRP筋张拉控制应力σcon

    Table  7   Tension control stress σcon of FRP tendons

    Type of FRPCFRPAFRPBFRP
    Upper limit0.65 fu0.55 fu0.50 fu
    Lower limit0.50 fu0.35 fu0.35 fu
    fu is the tensile strength of FRP tendon.
    下载: 导出CSV

    表  8   不同R/r下的弯折FRP筋强度折减系数

    Table  8   Strength reduction coefficients of deviated FRP tendon at different values of R/r

    R/rCFRP tendonAFRP tendonBFRP tendon
    200 0.61 0.75 0.79
    300 0.74 0.83 0.86
    400 0.81 0.88 0.89
    下载: 导出CSV

    表  9   体外预应力FRP筋混凝土梁抗弯性能研究数据库

    Table  9   Database of the studies on the flexural behaviors of concrete beams prestressed with external FRP tendons

    ReferencesNumber of specimenType of tendon
    Shi[6] 3 BFRP
    Ghallab and Beeby[43] 12 AFRP
    Wang et al.[44] 3 BFRP
    Du et al.[61] 4 CFRP
    El-Refai et al.[62] 3 CFRP
    Bennitz et al.[63] 6 CFRP
    Jung et al.[64] 2 CFRP
    Au et al.[65] 3 AFRP
    Tan et al.[66] 2 CFRP
    下载: 导出CSV

    表  10   体外预应力FRP筋混凝土梁长期性能研究数据库

    Table  10   Database of the studies on the long-term behaviors of concrete beams prestressed with external FRP tendons

    ReferencesNumber of specimenType of tendon
    Shi[6] 3 BFRP
    Cao and Fang[46] 1 CFRP
    下载: 导出CSV

    表  11   体外预应力FRP筋极限状态应力增量Δσpu的试验值与理论值之比

    Table  11   Ratios of experimental value to theoretical value of the stress increment Δσpu of external prestressing FRP tendons at ultimate state

    CodesACI 440.4RBS 8110fibGB 50608
    Average value 1.39 2.14 1.58 1.01
    Variance 0.58 0.89 0.45 0.20
    下载: 导出CSV

    表  12   体外预应力FRP筋混凝土梁抗弯承载力的试验值与理论值之比

    Table  12   Ratios of experimental value to theoretical value of the flexural capacity of concrete beams prestressed with external FRP tendons

    CodesACI 440.4RBS 8110fibGB 50608
    Average value 1.09 1.47 1.10 1.05
    Variance 0.15 0.22 0.13 0.07
    下载: 导出CSV

    表  13   预应力FRP筋混凝土梁裂缝宽度的试验值与理论值之比

    Table  13   Ratios of experimental value to theoretical value of the crack width of concrete beams prestressed with external FRP tendons

    CodesACI 440.4RfibGB 50608
    Average value0.941.030.92
    Variance0.530.590.65
    下载: 导出CSV

    表  14   预应力FRP筋混凝土梁挠度的试验值与理论值之比

    Table  14   Ratios of experimental value to theoretical value of the deflection of concrete beams prestressed with external FRP tendons

    CodesACI 440.4RfibGB 50608
    Average value 0.94 0.95 0.92
    Variance 0.34 0.38 0.25
    下载: 导出CSV

    表  15   预应力FRP筋混凝土梁长期挠度(反拱)试验结果与AEMM计算的理论值之比

    Table  15   Ratios of experimental value to theoretical value calculated using AEMM of the long-term deflection (camber) of concrete beams prestressed with external FRP tendons

    Duration of loading/day501001503005001000
    Average value of Shi[6] 0.92 1.04 1.12 / / /
    Variance of Shi[6] 0.33 0.24 0.46 / / /
    Cao and Fang[46] 1.08 1.12 0.95 0.94 1.15 1.13
    下载: 导出CSV

    表  16   预应力FRP筋混凝土梁长期预应力损失试验结果与AEMM计算的理论值之比

    Table  16   Ratios of experimental value to theoretical value calculated using AEMM of the prestress loss of concrete beams prestressed with external FRP tendons

    Duration of loading/day50100150
    Average value of Shi[6]1.050.941.08
    Variance of Shi[6]0.230.410.33
    下载: 导出CSV
  • 孙宝俊, 周国华. 体外预应力结构技术及应用综述[J]. 东南大学学报: 自然科学版, 2001, 31(1):109-113.

    SUN B, ZHOU G. A survey on Structural techniques and applications of external prestressing[J]. Journal of Southeast University (Natural Science Edition),2001,31(1):109-113(in Chinese).

    ACI Committee 440. ACI 440.4 R-04 Prestressing Concrete Structure with FRP Tendons[S]. USA: American Concrete Institute, 2004.

    GRACE N F, NAVARRE F C, NACEY R B, et al. Design-construction of bridge street bridge-first CFRP bridge in the United States[J]. PCI Journal,2002,47(5):20-35. DOI: 10.15554/pcij.09012002.20.35

    KARBHARI V M. Use of composite materials in civil infrastructure in Japan[R]. California, USA: University of California, 1998.

    鲁平印, 向星赟. 荷兰Dintelhaven桥的设计建造特色[J]. 中外公路, 2008, 28(9):245-248.

    LU P, XIANG X. Design and construction features of Dintelhaven Bridge in Netherland[J]. Journal of China & Foreign Highway,2008,28(9):245-248(in Chinese).

    史健喆. 海洋环境下BFRP筋体外预应力加固钢筋混凝土梁长期性能研究[D]. 南京: 东南大学, 2019.

    SHI J. Long-term behaviors of RC beam prestressed with external BFRP tendons in marine environment[D]. Nanjing: Southeast University, 2019 (in Chinese).

    WANG X, SHI J, WU G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique[J]. Engineering Structures,2015,101:34-44. DOI: 10.1016/j.engstruct.2015.06.052

    吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2016: 116-117.

    WU Z, WANG X, WU G. FRP Reinforced engineering structural systems[M]. Beijing: Science Press, 2016: 116-117 (in Chinese).

    YAMAGUCHI T, NISHIMURA T, UOMOTO T. Creep rupture of FRP rods made of aramid, carbon and glass fibers[J]. Structural Engineering & Construction: Tradition, Present and Future,1998,2:1331-1336.

    ANDO N, MATSUKAWA H, KAWAMURA M, et al. Experimental studies on the long-term tensile properties of FRP tendons[C]//Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Sapporo: Japan Concrete Institute, 1997, 2: 203-210.

    Tokyo Rope. CFCC, Carbon Fiber Composite Cable [EB/OL] Tokyo: Tokyo Rope Manufacturing Co. Ltd, 2000 [2021-03-15].

    SHI J, WANG X, WU Z, et al. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon[J]. Construction and Building Materials,2015,94:750-757. DOI: 10.1016/j.conbuildmat.2015.07.118

    BANIBAYAT P, PATNAIK A. Creep rupture performance of basalt fiber-reinforced polymer bars[J]. Journal of Aerospace Engineering,2013,28(3):04014074.

    ACI Committee 440. ACI 440.1R-15 Guide for the Design and Construction of Concrete Reinforced with FRP Bars[S]. USA: American Concrete Institute, 2015.

    GUNNARSSON A. Bearing capacity, relaxation and finite element simulation for prestressed concrete beams reinforced with BFRP tendons[D]. Iceland: Reykjavik University, 2013.

    THORHALLSSON E, JONSSON B S. Test of Prestressed concrete beams with BFRP tendons[C]//Workshop Structural Engineering and Composites Laboratory. Reykjavik: Reykjavik University, 2012.

    SHI J, WANG X, HUANG H, et al. Relaxation behavior of prestressing basalt fiber-reinforced polymer tendons considering anchorage slippage[J]. Journal of Composite Materials,2016,51(9):1275-1284.

    ZOU P X W. Long-Term Properties and Transfer Length of Fiber-Reinforced Polymers[J]. Journal of Composites for Construction,2003,7(1):10-19. DOI: 10.1061/(ASCE)1090-0268(2003)7:1(10)

    周祝林, 杨云娣. 纤维增强塑料蠕变机理的初步探讨[J]. 玻璃钢/复合材料, 1985, 4:31-35.

    ZHOU Z, YANG Y. A preliminary discussion on creep mechanism of fiber-reinforced plastic (FRP)[J]. Fiber Reinforced Plastics/Composites,1985,4:31-35(in Chinese).

    WANG X, SHI J, WU Z, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications[J]. Materials & Design,2016,89:1270-1277.

    WU Z, WANG X, IWASHITA K, et al. Tensile fatigue behaviour of FRP and hybrid FRP sheets[J]. Composites: Part B Engineering,2010,41(5):396-402. DOI: 10.1016/j.compositesb.2010.02.001

    WANG X, SHI J, WU Z, et al. Fatigue behavior of basalt fiber-reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2015,20(3):04015079.

    SAADATMANESH H, TANNOUS F E. Relaxation, creep, and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal,1999,96 (2):143-153.

    SAADATMANESH H, TANNOUS F E. Long-term behavior of aramid fiber reinforced plastic (AFRP) tendons[J]. ACI Materials Journal,1999,96(3):297-305.

    EL REFAI A. Durability and fatigue of basalt fiber-reinforced polymer bars gripped with steel wedge anchors[J]. Journal of Composites for Construction,2013,17(6):04013006. DOI: 10.1061/(ASCE)CC.1943-5614.0000417

    曾凡星. FRP拉索疲劳特性及其长寿命RC斜拉桥研究[D]. 南京: 东南大学, 2012.

    ZENG F. Study on fatigue properties of FRP cables and longevity of RC cable-stayed bridge[D]. Nanjing: Southeast University, 2012 (in Chinese).

    ADIMI M R, RAHMAN A H, BENMOKRANE B. New Method for Testing Fiber-Reinforced Polymer Rods under Fatigue[J]. Journal of Composites for Construction,2000,4(4):206-213. DOI: 10.1061/(ASCE)1090-0268(2000)4:4(206)

    ELREFAI A, WEST JS, SOUDKI K. Performance of CFRP tendon-anchor assembly under fatigue loading[J]. Composite Structures, 80(3): 352-360.

    SONG ST, ZANG H, DUAN, N, et al. Experimental Research and Analysis on Fatigue Life of Carbon Fiber Reinforced Polymer (CFRP) Tendons[J]. Materials,2019,12(20):786-795.

    XIE G H, TANG Y S, WANG C M, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites: Part B,2018,150:47-59. DOI: 10.1016/j.compositesb.2018.05.047

    诸葛萍, 丁勇, 侯苏伟, 等. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 工学版, 2014, 48(10):1822-1827, 1842.

    ZHUGE P, DING Y, HOU S, et al. Optimization design and fatigue test of new CFRP tendon anchor assembly[J]. Journal of Zhejiang University (Engineering Science),2014,48(10):1822-1827, 1842(in Chinese).

    张新越, 欧进萍. CFRP筋的疲劳性能[J]. 材料研究学报, 2006, 20(6):565-570. DOI: 10.3321/j.issn:1005-3093.2006.06.002

    ZHANG X, OU J. Experimental study on fatigue behavior of CFRP bars[J]. Chinese Journal of Materials Research,2006,20(6):565-570(in Chinese). DOI: 10.3321/j.issn:1005-3093.2006.06.002

    ODAGIRI T, MATSUMOTO K, NAKAI H. Fatigue and relaxation characteristics of continuous aramid fiber reinforced plastic rods[C]//Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Sapporo: Japan Concrete Institute, 1997, 2: 14-16.

    ATUTIS E, VALIVONIS J, ATUTIS M. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers under cyclic load[J]. Composite Structures,2018,Special Issue:‏389-396.

    SCHMIDT J W, BENNITZ A, TÄLJSTEN B, et al. Mechanical anchorage of FRP tendons – A literature review[J]. Construction & Building Materials,2012,32:110-121.

    SCHMIDT JW, BENNITZ A, TÄLJSTEN B, et al. Development of mechanical anchor for CFRP tendons using integrated sleeve[J]. Journal of Composites for Construction. 2010, 14(4): 397–405.

    TERRASI GP, AFFOLTER C, BARBEZAT M. Numerical optimization of a compact and reusable pretensioning anchorage system for CFRP tendons[J]. Journal of Composites for Construction,2011,15(2):126-135. DOI: 10.1061/(ASCE)CC.1943-5614.0000080

    张磊. 基于同源材料的FRP筋夹片式锚具优化设计及性能研究[D]. 南京: 东南大学, 2019.

    ZHANG L. Study on optimization design for a wedge anchor of FRP tendon based on homologous materials and its performance[D]. Nanjing: Southeast University, 2019 (in Chinese).

    ZHU H, DONG Z Q, WU G, et al. Experimental Evaluation of Bent FRP Tendons for Strengthening by External Prestressing[J]. Journal of Composites for Construction,2017,21(5):04017032. DOI: 10.1061/(ASCE)CC.1943-5614.0000811

    SANTOH N. CFCC: Carbon Fiber Composite Cable[M]// Nanni A. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures. Amsterdam: Elsevier Science Publishers B. V., 1993: 223-248.

    LOU T, LOPES S M R, LOPES A V. Numerical analysis of behaviour of concrete beams with external FRP tendons[J]. Construction and Building Materials,2012,35:970-978. DOI: 10.1016/j.conbuildmat.2012.04.055

    GHALLAB A. Calculating ultimate tendon stress in externally prestressed continuous concrete beams using simplified formulas[J]. Engineering Structures,2013,46:417-430. DOI: 10.1016/j.engstruct.2012.07.018

    GHALLAB A, BEEBY A W. Factors affecting the external prestressing stress in externally strengthened prestressed concrete beams[J]. Cement & Concrete Composites,2005,27(9):945-957.

    WANG X, SHI J, WU G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique[J]. Engineering Structures,2015,101:34-44. DOI: 10.1016/j.engstruct.2015.06.052

    史健喆; 汪昕; 吴智深. 采用同源材料夹片锚具的玄武岩纤维复材筋体外预应力加固混凝土梁受弯性能研究[J]. 工业建筑, 2019, 9:156-160.

    SHI J, WANG X, WU Z. Flexural behavior of RC beams prestressed with external BFRP tendons using a composite-wedge anchorage[J]. Industrial Construction,2019,9:156-160(in Chinese).

    曹国辉, 方志. 体外CFRP筋预应力混凝土箱梁长期受力性能试验研究[J]. 土木工程学报, 2007, 40(2):18-24. DOI: 10.3321/j.issn:1000-131X.2007.02.004

    CAO G, FANG Z. Experimental study on the long-term behavior of concrete box girders prestressed with external CFRP tendons[J]. China Civil Engineering Journal,2007,40(2):18-24(in Chinese). DOI: 10.3321/j.issn:1000-131X.2007.02.004

    高宏. 体外预应力FRP筋加固混凝土梁的疲劳性能研究[D]. 南京: 东南大学, 2006.

    GAO H. Research of the fatigue performance of RC beams externally prestressed with FRP tendons[D]. Nanjing: Southeast University, 2006 (in Chinese).

    BRAIMAH A, GREEN M F, CAMPBELL T I. Fatigue behaviour of concrete beams post-tensioned with unbonded carbon fibre reinforced polymer tendons[J]. Canadian Journal of Civil Engineering,2006,33(9):1140-1155. DOI: 10.1139/l06-063

    GRACE N F. Response of continuous CFRP prestressed concrete bridges under static and repeated loadings[J]. PCI Journal,2000,45(6):84-102. DOI: 10.15554/pcij.11012000.84.102

    Elrefai A, West J, Soudki K. Fatigue of reinforced concrete beams strengthened with externally post-tensioned CFRP tendons[J]. Construction and Building Materials,2012,29:246-256. DOI: 10.1016/j.conbuildmat.2011.10.014

    朱虹. 新型预应力FRP筋预应力混凝土结构的研究[D]. 南京: 东南大学, 2004.

    ZHU H. Study on concrete structure prestressed with FRP tendons[D]. Nanjing: Southeast University, 2004 (in Chinese).

    GRACE N F, ENOMOTO T, YAGI K. Behavior of CFCC and CFRP Leadline prestressing systems in bridge construction[J]. PCI Journal,2002,47(3):90-103. DOI: 10.15554/pcij.05012002.90.103

    程君. 体外预应力CFRP筋混凝土连续梁疲劳性能研究[D]. 南京: 东南大学, 2017.

    CHENG J. Study on the fatigue behavior of reinforced concrete continuous beams prestressed with external CFRP tendons[D]. Nanjing: Southeast University, 2017 (in Chinese).

    中华人民共和国住房和城乡建设部. GB 50608—2020 纤维增强复合材料工程应用技术标准[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). GB 50608—2020 Technical standard for fiber reinforced polymer (FRP) in construction[S]. Beijing: China Planning Press, 2020 (in Chinese).

    YOUAKIM S A, KARBHARI V M. An approach to determine long-term behavior of concrete members prestressed with FRP tendons[J]. Construction and Building Materials,2007,21(5):1052-1060. DOI: 10.1016/j.conbuildmat.2006.02.006

    The International Federation for Structural Concrete (fib). fib MC2010 fib model code for concrete structures[S]. Hoboken, USA: Ernst & Sohn, 2010.

    BSI Technical Committee B/525. BS 8110-1-1997 Structural use of concrete—Part 1: Code of practice for design and construction[S]. Britain: British Standard Institute, 1997.

    PENG F, XUE W, TAN Y. Design approach for flexural capacity of prestressed concrete beams with external tendons[J]. Journal of Structural Engineering,2018,144(12):04018215. DOI: 10.1061/(ASCE)ST.1943-541X.0002208

    DOLAN C W. Design recommendations for concrete structures prestressed with FRP tendons: FHWA contract, final report[R]. USA: Federal Highway Administration, 2001.

    中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2016 (in Chinese).

    DU J S, YANG D, NG P L, et al. Response of concrete beams partially prestressed with external unbonded carbon fiber-reinforced polymer tendons[J]. Advanced Materials Research,2010,150-151:344-349. DOI: 10.4028/www.scientific.net/AMR.150-151.344

    EL-REFAI A, WEST J, SOUDKI K. Strengthening of RC beams with external post-tensioned CFRP tendons. Case histories and use of FRP for prestressing applications[J]. ACI Special Publication,2007,245:123-142.

    BENNITZ A, SCHMIDT J W, NILIMAA J, et al. Reinforced concrete t-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons[J]. ACI Structural Journal,2012,109(4):521-530.

    JUNG W T, PARK J S, PARK Y H, et al. An experimental study on the flexural behavior of post-tensioned concrete beams with CFRP tendons[J]. Applied Mechanics and Materials,2013,351-352:717-721. DOI: 10.4028/www.scientific.net/AMM.351-352.717

    AU F T, SU R K, TSO K, et al. Behaviour of partially prestressed beams with external tendons[J]. Magazine of Concrete Research,2008,60(6):455-467. DOI: 10.1680/macr.2008.60.6.455

    TAN K, FAROOQ M, NG C, et al. Behavior of simple-span reinforced concrete beams locally strengthened with external tendons[J]. ACI Structural Journal,2001,98(2):174-183.

图(9)  /  表(16)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程

目录

/

返回文章
返回