植酸脒基脲的合成及其对木材的阻燃

郑书清, 张益, 穆佳鑫, 王永娟, 王奉强, 张志军

郑书清, 张益, 穆佳鑫, 等. 植酸脒基脲的合成及其对木材的阻燃[J]. 复合材料学报, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002
引用本文: 郑书清, 张益, 穆佳鑫, 等. 植酸脒基脲的合成及其对木材的阻燃[J]. 复合材料学报, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002
ZHENG Shuqing, ZHANG Yi, MU Jiaxin, et al. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002
Citation: ZHENG Shuqing, ZHANG Yi, MU Jiaxin, et al. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002

植酸脒基脲的合成及其对木材的阻燃

基金项目: 国家自然科学基金(31890773;31670570)
详细信息
    通讯作者:

    张志军,博士,副教授,博士生导师,研究方向为生物质及其复合材料的制备、生物质复合材料热化学转化及材料阻燃E-mail: zzj_1003@163.com

  • 中图分类号: S781.73;TB332

Preparation of amidinourea phytate and its flame retardant effect on wood

Funds: National Natural Science Foundation of China (31890773; 31670570)
  • 摘要:

    植酸(Phytic acid,PA)是一种极具潜力的磷系水性生物基阻燃剂,但其单独处理木材存在PA易流失、燃烧烟释放量大等问题,通过与其他氮、硼系阻燃剂复配,可在一定程度上缓减上述问题。然而,由于PA酸性较强,PA及其复配阻燃剂处理木材时会造成木材降解,进而影响其力学强度。以PA和双氰胺为原料合成了一类新型磷氮阻燃剂−植酸脒基脲(Amidinourea phytate,AUP)。利用FTIR、XRD、XPS及TG等手段对AUP阻燃剂理化特性进行了表征。采用TG、Py-GC/MS、氧指数测定仪、CONE等研究了AUP对杨木热解及燃烧行为的影响,探究了其阻燃机制。结果表明:AUP阻燃材在较低的增重率(8.73wt%)下表现出优异的阻燃及抑烟性能,优于增重率为14.8wt%的PA阻燃材,且抗流失性较好;AUP阻燃材的极限氧指数(LOI)值为34.8%,较未处理材提高了54.0%;总释热量和总生烟量分别降低了57.7%、65.7%,成炭率提高了148%,残炭结构更为密实,具有凝聚相与气相协效阻燃效果。此外,AUP阻燃材冲击强度比未处理材提高了58.5%,而PA阻燃材则下降了29.2%。

     

    Abstract:

    Phytic acid (PA) is a very promising phosphorus-based aqueous bio-based flame retardant, but its treatment of wood alone has problems such as easy loss of PA and high release of combustion smoke. This challenge can be mitigated to some extent by compounding with other nitrogen and boron flame retardants. However, due to the strong acidity of PA, PA and its complex flame retardants used in wood fire-retardant treatment may cause wood degradation, which in turn affects its mechanical strength. In this study, a new type of phosphorus-nitrogen flame retardant, amidinourea phytate (AUP), was synthesised from PA and dicyandiamide. The physicochemical properties of AUP was characterised using FTIR, XRD, XPS and TG. The effects of AUP on the pyrolysis and combustion behaviours of poplar wood were investigated by TG, Py-GC/MS, limiting oxygen index (LOI) tester and CONE, and the flame retardant mechanism was explored. The results showed that the AUP flame retardant wood showed excellent flame retardant and smoke suppression properties at a lower mass gain rate (8.73wt%) than the PA flame retardant wood with a mass gain rate of 14.8wt%, and the loss resistance was better; The LOI value of the AUP flame retardant wood was 34.8%, which was 54.0% higher than that of the untreated wood; The total heat release and total smoke production were reduced by 57.7% and 65.7% respectively, and the char formation rate was increased by 148%, and the residual char structure was denser, with the effect of cohesive phase and gas phase. In addition, the impact strength of AUP flame retardant wood increased by 58.5% compared with that of untreated wood, while that of PA flame retardant wood decreased by 29.2%.

     

  • 图  1   AUP-x的溶解度变化曲线

    Figure  1.   Solubility change curves of AUP-x

    图  2   PA、DCD、AUP-x的FTIR图像(a)及AUP-x的XRD (b)、XPS C1s (c)/N1s (d)能谱

    Figure  2.   FTIR spectra (a) of PA, DCD, AUP-x, XRD (b) and C1s (c)/N1s (d) of XPS patterns from AUP-x

    图  3   AUP阻燃剂的合成机制

    Figure  3.   Synthesis mechanism of AUP flame retardant

    图  4   AUP- x阻燃剂在N2气氛下的热重分析曲线:(a) TG;(b) DTG

    Figure  4.   Thermogravimetric analysis curves of AUP-x in N2 atmosphere: (a) TG; (b) DTG

    图  5   未处理材及AUP阻燃处理材的SEM图像:((a), (b))未处理材的横截面;((c), (d)) AUP处理材的横截面;(e) AUP处理材的纵切面;(f) 附着在木材内部的AUP阻燃剂分子形貌

    Figure  5.   SEM images of untreated wood and AUP flame retardant treated wood: ((a), (b)) Cross section of untreated wood; ((c), (d)) Cross section of AUP treated wood; (e) Longitudinal section of AUP treated wood; (f) Molecular morphology of AUP flame retardant attached to wood

    图  6   未处理材及抗流失测试前后的PA阻燃材、AUP阻燃材极限氧指数(LOI)值

    Figure  6.   Limiting oxygen index (LOI) values of control, PA/wood and AUP/wood before and after loss resistance test

    图  7   未处理材、PA阻燃材、AUP阻燃材在50 kW/m2下的锥形量热测试结果:(a)热释放速率(HRR);(b)总热释放(THR);(c)生烟速率(SPR);(d)总烟释放(TSP);(e) CO释放速率(COP);(f)质量损失速率(MLR)

    Figure  7.   Cone calorimetric test results of of control, PA/wood and AUP/wood under 50 kW/m2: (a) Heat relaase rate (HRR); (b) Total heat release (THR); (c) Smoke release rate (SPR); (d) Total smoke release (TSP); (e) CO production (COP); (f) Mass loss rate (MLR)

    图  8   未处理材、PA阻燃材、AUP阻燃材分别在N2气氛下的TG (a)、DTG (b)及空气气氛下的TG (c)、DTG (d)

    Figure  8.   Thermogravimetric curves of control, PA/wood, AUP/wood: TG (a) and DTG (b) in N2 atmosphere; TG (c) and DTG (d) in air

    图  9   未处理材、PA阻燃材、AUP阻燃材锥形量热测试后的残炭数码照片及SEM-EDS图像

    Figure  9.   Digital photographs and SEM-EDS images of residual carbon from control, PA/wood and AUP/wood after cone test

    图  10   未处理材、PA阻燃材、AUP阻燃材的总离子流图(TIC) (a)及各类型气态产物相对含量(b)

    Figure  10.   Total ion chromatogram (TIC) (a) and relative content of each type of gas product (b) of control, PA/wood and AUP/wood after cone test

    表  1   植酸脒基脲(AUP)的合成配方

    Table  1   Formulation of amidinourea phytate (AUP)

    Ingredients DCD/g PA/mL Molar ratio (PA to DCD) H2O/mL apH
    AUP-6 12.6 27.6 1∶6 10.4 3.52
    AUP-9 18.9 27.6 1∶9 21.4 4.34
    AUP-12 25.2 27.6 1∶12 32.1 5.39
    Notes: apH value is tested after reaction at 25℃; PA—Phytic acid; DCD—Dicyandiamide.
    下载: 导出CSV

    表  2   AUP-x的元素原子比

    Table  2   Atomic fractions of AUP-x

    Sample C/at% O/at% N/at% P/at%
    AUP-6 23.91 38.65 30.36 7.08
    AUP-9 25.17 37.02 32.48 5.33
    AUP-12 25.34 30.78 38.41 5.47
    下载: 导出CSV

    表  3   抗流失试验相关参数

    Table  3   Parameters related to erosion resistance test

    Sample ε/% y1 y2 I/%
    PA/wood −53.94 68.53±3.49 15.73±1.65 22.89±1.35
    AUP/wood −1.36 41.65±0.67 35.55±0.52 85.36±1.09
    Notes: ε indicates the moisture absorption rate of the flame retardant material; y1, y2 indicate the amount of drug load before and after the anti-erosion test; I indicates the loss resistance of the flame retardant.
    下载: 导出CSV

    表  4   未处理材、PA阻燃材、AUP阻燃材的力学性能

    Table  4   Mechanical properties of control, PA/wood and AUP/wood

    Sample Flexural strength/MPa Flexural modulus/GPa Impact strength/(kJ·m−2)
    Control 122.68±0.16 11.31±0.08 19.92±0.29
    PA/wood 91.65±0.21 10.69±0.11 14.10±0.12
    AUP/wood 113.18±0.07 10.81±0.07 31.58±0.25
    下载: 导出CSV

    表  5   未处理材、PA阻燃材、AUP阻燃材的锥形量热测试参数

    Table  5   Cone calorimetric test parameters of control, PA/wood and AUP/wood

    Sample Pk1-HRR/
    (kW·m−2)
    Pk2-HRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    Av-EHC/
    (MJ·kg−1)
    TSP/
    (m2·m−2)
    Av-COY/
    (MJ·kg−1)
    TTI/s FPI/
    (s·m2·kW−1)
    Char yield/
    %
    B-W A-W B-W A-W B-W A-W
    Control 161.9 201.7 58.2 12.4 3.5 0.026 31 0.154 13.5
    PA/wood 104.9 139.1 129.2 165.1 39.2 49.9 9.8 3.6 0.035 19 0.147 19.4
    AUP/wood 36.3 42.9 82.1 77.1 20.0 21.4 5.7 1.2 0.041 55 0.670 33.5
    Notes: B-W refers to before the loss resistance test; A-W refers to after the loss resistance test; Pk-HRR was the peak values of HRR with time; THR was the total heat release; Av-EHC was the average effective heat of combustion; TSP was the total smoke release; Av-COY was the average CO production; TTI was the time from when the cone shutter opened, exposing the sample to the set heat flux, to the moment flaming was established; FPI indicates fire performance index; Char yield was the carbon residue ratio.
    下载: 导出CSV

    表  6   未处理材、PA阻燃材和AUP阻燃材的热重特征参数

    Table  6   Thermogravimetric parameters of control, PA/wood and AUP/wood

    Sample Atmosphere T5wt%/℃ T10wt%/℃ T50wt%/℃ Tmax/℃ W800℃/wt%
    Control N2 240 300 353 362 10.9
    Air 288 293 369 372 0.1
    PA/wood N2 72 194 288 288 27.9
    Air 183 233 377 298 17.2
    AUP/wood N2 200 252 322 294 29.5
    Air 213 274 369 306 16.8
    Notes: The data in the table are obtained under nitrogen and air atmosphere. T5wt% refers to the temperature at 5wt% mass loss; T10wt% refers to the temperature at 10wt% mass loss; T50wt% refers to the temperature at 50wt% mass loss; Tmax refers to the temperature at which the rate of heat loss is maximized; W800℃ refers to the residual rate of the sample at 800℃.
    下载: 导出CSV
  • [1] 徐有明. 木材学(第2版)[M]. 北京: 中国林业出版社, 2019: 2-10.

    XU Youming. Wood science (2nd edition)[M]. Beijing: China Forestry Press, 2019: 2-10(in Chinese).

    [2] 侯方淼, 李浩爽. 全球价值链下中国木材产业参与国际分工及其影响因素[J]. 林业经济, 2020, 42(5): 3-18.

    HOU Fangmiao, LI Haoshuang. Factors influencing China's timber industry's participation into the division of global value chain[J]. Forestry Economics, 2020, 42(5): 3-18(in Chinese).

    [3] 吴天博, 田刚. “丝绸之路经济带”视域下中国与沿线国家木质林产品贸易−基于引力模型的实证研究[J]. 国际贸易问题, 2019(11): 77-87.

    WU Tianbo, TIAN Gang. The trade of woody forest products between China and the countries along the Silk Road Economic Belt—An empirical study based on gravity model[J]. Journal of International Trade, 2019(11): 77-87(in Chinese).

    [4] 张其, 肖泽芳, 龚宸, 等. 磷酸脒基脲和季戊四醇磷酸酯复合改性MUF木材涂料的阻燃性能研究[J]. 林业工程学报, 2018, 3(6): 48-55.

    ZHANG Qi, XIAO Zefang, GONG Chen, et al. Wood amino-resin coatings using synergistic fire-retardant modification of pentaerythritol phosphate and guanylurea phosphate[J]. Journal of Forestry Engineering, 2018, 3(6): 48-55(in Chinese).

    [5] 班大明, 徐春萍. 国内磷系阻燃剂在环氧树脂中的应用及研究进展[J]. 贵州师范大学学报(自然科学版), 2023, 41(3): 95-102.

    BAN Daming, XU Chunping. Application and development of phosphorus based flame retardant on epoxy resins in China[J]. Journal of Guizhou Normal University (Natural Sciences), 2023, 41(3): 95-102(in Chinese).

    [6] 胡泊, 朱继伟, 武保林, 等. HPCTP/MMT复配阻燃环氧树脂阻燃及力学性能研究[J]. 塑料科技, 2019, 47(1): 125-128.

    HU Bo, ZHU Jiwei, WU Baolin, et al. Study on flame retardancy and mechanical properties of epoxy resin flame-retarded by HPCTP/MMT compound[J]. Plastics Science and Technology, 2019, 47(1): 125-128(in Chinese).

    [7] 胡泊, 赵腾龙, 武保林, 等. 含磷阻燃剂阻燃环氧树脂的阻燃特性研究[J]. 工业安全与环保, 2019, 45(7): 5-9. DOI: 10.3969/j.issn.1001-425X.2019.07.002

    HU Bo, ZHAO Tenglong, WU Baolin, et al. Study on flame retardant properties of epoxy resin with phosphorous-containing flame retardant[J]. Industrial Safety and Environmental Protection, 2019, 45(7): 5-9(in Chinese). DOI: 10.3969/j.issn.1001-425X.2019.07.002

    [8] 王会娅, 程哲, 卢林刚, 等. 新型环磷腈阻燃剂合成及其在环氧树脂中的应用[J]. 塑料, 2019, 48(5): 57-62.

    WANG Huiya, CHENG Zhe, LU Lingang, et al. Synthesis and performance in epoxy resins of novel cyclotriphosphazene flame retardants[J]. Plastics, 2019, 48(5): 57-62(in Chinese).

    [9] 李霈, 付海, 赵欧, 等. 聚磷酸酯阻燃剂复配聚磷酸铵对环氧树脂阻燃性能的影响[J]. 高等学校化学学报, 2017, 38(2): 294-302. DOI: 10.7503/cjcu20160599

    LI Pei, FU Hai, ZHAO Ou, et al. Influence of polyphosphate flame retardant couple with ammonium polyphosphate on epoxy resin[J]. Chemical Journal of Chinese Universities, 2017, 38(2): 294-302(in Chinese). DOI: 10.7503/cjcu20160599

    [10] 秦维, 闵样, 陈超, 等. 聚磷酸酯膨胀阻燃剂复配有机蒙脱土阻燃改性环氧树脂[J]. 中国塑料, 2018, 32(12): 112-117.

    QIN Wei, MIN Yang, CHEN Chao, et al. Ammonium polyphosphate/organic montmorillonite compounds flame-retardant epoxy resin[J]. China Plastics, 2018, 32(12): 112-117(in Chinese).

    [11]

    XUE Y, ZUO X, WANG L, et al. Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate[J]. Composites Part B: Engineering, 2020, 196: 108124.

    [12]

    CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016, 124(15): 114-119.

    [13]

    CHENG X W, LIANG C X. GUAN J P, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018, 427: 69-80. DOI: 10.1016/j.apsusc.2017.08.021

    [14]

    COSTES L, LAOUTID F, BROHEZ S, et al. Phytic acid-lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide[J]. European Polymer Journal, 2017, 94: 270-285. DOI: 10.1016/j.eurpolymj.2017.07.018

    [15] 王冬. 植酸基阻燃剂的制备及其阻燃机制研究[D]. 无锡: 江南大学, 2023.

    WANG Dong. Preparation of phytate based flame retardants and study on the flame-retardant mechansims[D]. Wuxi: Jiangnan University, 2023(in Chinese).

    [16]

    LI L M, CHEN Z, LU J, et al. Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: Phytic acid, hydrolyzed collagen, and glycerol[J]. ACS Omega, 2021, 6(5): 3921-3930. DOI: 10.1021/acsomega.0c05778

    [17] 吴宇晖, 张少迪, 任自忠, 等. 植酸-三聚氰胺处理木材阻燃性能研究[J]. 北京林业大学学报, 2020, 42(4): 155-161.

    WU Yuhui, ZHANG Shaodi, REN Zizhong, et al. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, 42(4): 155-161(in Chinese).

    [18] 王海军, 陈立新, 缪桦. 氮系阻燃剂的研究及应用概况[J]. 热固性树脂, 2005, 20(4): 36-41. DOI: 10.3969/j.issn.1002-7432.2005.04.011

    WANG Haijun, CHEN Lixin, MIAO Hua. The study on nitrogen-containing flame retardants and its application in plastics[J]. Thermosetting Resin, 2005, 20(4): 36-41(in Chinese). DOI: 10.3969/j.issn.1002-7432.2005.04.011

    [19] 刘勤, 柴生勇, 李岩, 等. 双氰胺氰尿酸盐在聚丙烯中的阻燃应用[J]. 塑料工业, 2021, 49(4): 163-168. DOI: 10.3969/j.issn.1005-5770.2021.04.031

    LIU Qin, CHAI Shengyong, LI Yan, et al. The application of dicyanodiamide cyanurate in polypropylene as flame retardant[J]. China Plastics Industry, 2021, 49(4): 163-168(in Chinese). DOI: 10.3969/j.issn.1005-5770.2021.04.031

    [20] 全国木材标准化技术委员会. 改性木材尺寸稳定性测试方法: LY/T 2490—2015[S]. 北京: 中国标准出版社, 2015.

    National Wood Standardization Technical Committee. Test method for dimensional stability of modified wood: LY/T 2490—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).

    [21]

    American Wood Protection Association. Standard methods for accelerated evaluation of preservative: AWPA E11-06[S]. Birmingham: American Wood Protection Association, 2016.

    [22] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of burning behavior of plastics by oxygen index method—Part 2: Room temperature test: GB/T 2406.2—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).

    [23] 中国国家标准化管理委员会. 塑料简支梁冲击性能的测定 第1部分: 非仪器化冲击试验: GB/T 1043.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Determination of impact properties of simply supported beams of plastics—Part 1: Non-instrumented impact test: GB/T 1043.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).

    [24]

    American Society for Testing and Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790-03[S]. West Conshohocken: ASTM International, 2003.

    [25]

    International Organization for Standardization. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1[S]. Geneva: ISO, 2015.

    [26]

    RAYÉE Q, NGUYEN P T, SEGATO T, et al. Electrochemical synthesis of copper(I) dicyanamide thin films[J]. Journal of Electroanalytical Chemistry, 2018, 819: 331-337. DOI: 10.1016/j.jelechem.2017.11.001

    [27]

    YUAN X H, LUO K, WU Y J, et al. Investigation on the stability of derivative melam from melamine pyrolysis under high pressure[J]. Nanomaterials, 2018, 8(3): 172. DOI: 10.3390/nano8030172

    [28]

    ZHANG F X, GAO W W, JIA Y L, et al. A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199: 256-265. DOI: 10.1016/j.carbpol.2018.05.085

    [29]

    PAN Y, LIU L X, WANG X, et al. Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment[J]. Carbohydrate Polymers, 2018, 201: 1-8. DOI: 10.1016/j.carbpol.2018.08.044

    [30]

    ROSACE G, CASTELLANO A, TROAVTO V, et al. Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organo-phosphorus system[J]. Carbohydrate Polymers, 2018, 196: 348-358. DOI: 10.1016/j.carbpol.2018.05.012

    [31]

    LIU L, PAN Y, ZHAO Y, et al. Self-assembly of phosphonate-metal complex for super-hydrophobic and durable flame-retardant polyester-cotton fabrics[J]. Cellulose, 2020, 27(10): 6011-6025. DOI: 10.1007/s10570-020-03148-z

    [32]

    XU F, ZHANG G X, WANG P, et al. A novel ε-polylysine-derived durable phosphorus-nitrogen-based flame retardant for cotton fabrics[J]. Cellulose, 2021, 28(6): 3807-3822. DOI: 10.1007/s10570-021-03714-z

    [33]

    LIN C, KARLSSON O, MARTINKA J, et al. Approaching highly leaching-resistant fire-retardant wood by in situ polymerization with melamine formaldehyde resin[J]. ACS Omega, 2021, 6(19): 12733-12745.

    [34]

    HONG J, HUANG S Z, WU H Q, et al. Effects of eutrophic water with ammonium chloride, urea, potassium dihydrogen phosphate and sodium-β-glycerophosphate on Myriophyllum verticillatum and epiphytic bacteria[J]. Science of The Total Environment, 2023, 891: 164507. DOI: 10.1016/j.scitotenv.2023.164507

    [35]

    YAMADA Y, TANAKA H, KUBO S, et al. Unveiling bonding states and roles of edges in nitrogen-dopedgraphene nanoribbon by X-ray photoelectron spectroscopy[J]. Carbon, 2021, 185: 342-367. DOI: 10.1016/j.carbon.2021.08.085

    [36]

    SALMEIA A K, GAAN S, MALUCELLI G, et al. Recent advances for flame retardancy of textiles based on phosphorus chemistry[J]. Polymers, 2016, 8(9): 319. DOI: 10.3390/polym8090319

    [37]

    ANDRÉ L M D, JIVALDO DO R M. Study of thermal behavior of phytic acid[J]. Brazilian Journal of Pharmaceutical Sciences, 2013, 49(2): 277-282.

    [38] 郝畅, 郭垂根. 复配阻燃剂对木材阻燃与力学性能的影响[J]. 消防科学与技术, 2016, 35(5): 663-667. DOI: 10.3969/j.issn.1009-0029.2016.05.022

    HAO Chang, GUO Chuigen. Effect of compound flame retardant on flame retardant and mechanical properties of pinus sylvestris[J]. Fire Science and Technology, 2016, 35(5): 663-667(in Chinese). DOI: 10.3969/j.issn.1009-0029.2016.05.022

    [39]

    SHANG S, YUAN B, SUN Y, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. Journal of Colloid and Interface Science, 2019, 553: 364-371.

    [40]

    YUAN L, CHEN X, HU Y. Combination effect of 4-picolinic acid with 5A zeolite on ammonium polyphosphate flame-retarded sawdust board[J]. Journal of Fire Sciences, 2014, 32(3): 230-240.

    [41]

    WILKIE C A, MORGAN A, STEC A A, et al. Fire toxicity and its assessment[M]//Fire Retardancy of Polymeric Materials. Oxfordshire: Taylor & Francis Group, 2009: 453-477.

    [42]

    YAN D, CHEN D, TAN J, et al. Synergistic flame retardant effect of a new N-P flame retardant on poplar wood density board[J]. Polymer Degradation and Stability, 2023, 211: 110331. DOI: 10.1016/j.polymdegradstab.2023.110331

    [43] 王清文. 新型木材阻燃剂FRW[D]. 哈尔滨: 东北林业大学, 2007.

    WANG Qingwen. FRW fire retardant for wood[D]. Harbin: Northeast Forestry University, 2007(in Chinese).

  • 其他相关附件

  • 目的 

    植酸(PA)是一种环保且高效的磷系水性生物基阻燃剂,而其单独应用于木材阻燃处理时会引起诸如吸湿性增强、燃烧时烟释放量大等问题。因此本研究旨在保证阻燃性能的同时,改善单独应用PA时的负面影响,以PA和双氰胺(DCD)为原料合成了阻燃、抑烟、抗流失性兼备的新型磷氮阻燃剂——植酸脒基脲(AUP)。

    方法 

    利用FTIR、XRD、XPS、TG等手段对AUP阻燃剂化学结构、结晶特性、热稳定性等进行了表征,并推测了AUP的合成机理。用15wt% AUP水溶液浸渍杨木得到AUP阻燃材,并利用万能力学试验机、极限氧指数测定仪、锥形量热仪、TG、SEM-EDS、热裂解-气相色谱/质谱联用仪(Py-GC/MS)等测试分析了AUP处理对杨木的力学性能、阻燃性能、热解特性等的影响,探究了其阻燃机理。

    结果 

    由FTIR、XPS表征可以推测出AUP的化学结构及其合成机理,即DCD溶于水后,在强酸性环境下,其中的氰基与水发生加成反应异构化为脒基脲,脒基脲进一步与PA发生酸碱反应成盐。AUP阻燃材的抗吸湿率仅为-1.36%,AUP抗流失率为85.36%,说明其对杨木吸湿性影响较小,抗流失性能优异;由SEM图像可以看出AUP颗粒整体形貌较为规整,呈片层堆叠的三维的花球状结构;力学测试表明,AUP阻燃材冲击强度比未处理材则提高了58.5%,弯曲强度降低了7.74%,而PA阻燃材冲击、弯曲强度均有不同程度的降低,这主要是由于AUP酸性较PA小,浸渍处理时木材的酸降解在一定程度上受到抑制,且木材细胞腔及间隙内填充了相对分子量较大的AUP药剂,受力时能起到一定的缓冲,增强了木材纤维骨架的韧性;极限氧指数测试中,经AUP处理后的杨木试样极限氧指数值(LOI)为34.8%,其经抗流失性测试后的LOI值为34.6%,说明AUP阻燃剂的抗流失性较强,浸水后对阻燃材的阻燃效果影响较小;锥形量热测试中,经AUP处理后,木材的总释热量(THR)降低到20.0 MJ·m,该值远低于PA阻燃材(39.2 MJ·m),经抗流失试验后,AUP阻燃材THR值仅增加了6.9%;AUP阻燃材总生烟量(TSP)下降了65.7%;AUP阻燃材的失重速率较素材大幅降低,残炭率为33.5%,比未处理材提高了148%。以上结果表明,相比未处理材与PA阻燃材,AUP阻燃材的力学性能、阻燃抑烟性能都有所提升。AUP阻燃处理加速了杨木热解,但其促进作用弱于PA,表明AUP阻燃材热稳定性优于PA阻燃材,且阻燃处理对于杨木在空气气氛下的热解行为影响更为显著;AUP阻燃材残炭结构最为致密、而且出现了一定程度的膨胀发泡,表面裂缝少,细胞结构保持较完整、密实,残炭中检测到了P元素,这表明AUP分子结构中的磷酸基团受热分解生成含磷酸性物质,这些酸性物质会催化杨木脱水脱氧反应,形成更为稳定的残炭结构,并且该结构能够进一步隔绝氧气及热量,阻碍杨木内部的氧化热解反应,这也揭示了AUP在凝聚相中催化杨木成炭的阻燃机制;与未处理材相比,AUP阻燃剂的添加显著改变了木材热解气相产物的组成,热解生成了大量的NH、1-四唑-2-基乙酮等含氮化合物,羟甲基糠醛、糠醛等醛酮化合物,小分子的酚类含量均有所降低,而乙酸含量有一定程度增加,由此可知AUP的加入,一方面改变了木材的热解路径,降低了分解产物的可燃性,另一方面,AUP阻燃剂分解产生的水、NH等不可燃气体稀释了可燃性气体及O的浓度,有助于阻断或延滞木材的气相燃烧反应。

    结论 

    本研究所制备的AUP阻燃剂具有室温下溶解度低、升温溶解度增加的溶解特性,加入AUP阻燃剂后的杨木冲击性能有所提升,阻燃抑烟性能显著提升,成炭率高,炭层断裂的缝隙变窄、深度变浅,表面致密,内部依然保持较完整的细胞结构。AUP阻燃材在力学性能、阻燃性能等方面均优于PA阻燃材,解决了PA单独用作阻燃剂处理杨木时所造成的易流失、力学性能下降、烟释放量增大的问题。此外,AUP阻燃剂在杨木燃烧过程中表现出凝聚相和气相协效阻燃作用,能够有效抑制基材的燃烧和分解。

  • 植酸(phytic acid,PA),主要来源于果实和种子,生物相容性好,磷含量高达28%,是一种极具潜力的水性生物基阻燃剂。但其单独处理木材存在PA易流失,燃烧烟释放量大等问题,通过与其他氮、硼系阻燃剂复配,可在一定程度上缓减上述问题。然而,由于PA较高的酸性,PA及其复配阻燃剂处理木材时会造成木材一定程度降解,从而影响其力学强度。因此,满足阻燃性能的同时,良好的抑烟能力以及合适的酸碱度成为新型植酸基木材阻燃剂的关键所在。本研究利用简单酸碱成盐反应,以PA和双氰胺(DCD)为原料合成了一种新型磷氮阻燃剂----植酸脒基脲(简称为AUP)。综合利用红外光谱、X射线衍射、X射线光电子能谱、热重分析等手段对AUP 阻燃剂理化特性进行了表征,探究了AUP阻燃剂的阻燃机制。在此基础上,用15wt% AUP水溶液浸渍杨木得到的AUP处理材,利用热重分析仪、极限氧指数测定仪、锥形量热仪、万能力学试验机等仪器研究了AUP处理对杨木的热稳定性、阻燃性能、力学性能的影响,探究了其阻燃机制。结果表明:与PA相比,AUP酸碱度与基材相当,抗流失性能优异,对基材力学性能影响小,AUP阻燃材冲击强度比未处理材提高了58.5%,而PA阻燃材则下降了29.2%。另外,AUP富含氮元素,可充分发挥P-N协同效应,提高阻燃及抑烟效率。AUP阻燃材在较低的载药率(8.73%)下表现出优异的阻燃及抑烟性能,优于同等测试条件下载药率为14.8%的PA阻燃材;与未处理材相比,AUP阻燃材的LOI值为34.8%,提高了54.0%;总释热量和总生烟量分别降低了57.7%、成炭率提高了148%,残炭结构更为密实,表现出凝聚相与气相协效阻燃效果。

    未处理材、PA阻燃材、AUP阻燃材的总释热量与总生烟量对比

图(10)  /  表(6)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  137
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-04-15
  • 录用日期:  2024-04-19
  • 网络出版日期:  2024-05-21
  • 发布日期:  2024-04-29
  • 刊出日期:  2025-01-14

目录

    /

    返回文章
    返回