超低损耗FeSiAl磁粉芯的制备与性能

Preparation and performance of ultra-low core loss FeSiAl soft magnetic composites

  • 摘要: 目前家电、汽车和手机等产品的电子元器件日益呈现小型化、智能化的发展趋势,因此,降低磁粉芯(SMCs)在高频、大功率下应用时的功率损耗是适应其发展的必要措施。将气雾化Fe-9.6 wt%Si-5.4 wt%Al(FeSiAl)磁粉进行磷化绝缘处理,经预热处理、成型和退火热处理,得到了超低损耗FeSiAl复合磁粉芯(SMCs)。分析结果表明,磷化后的FeSiAl磁粉经热处理后,颗粒表面包覆的磷酸盐转变为硅酸盐,且磁粉中晶粒长大,磁粉的矫顽力降低;制得的磁粉芯功率损耗也明显降低,这主要归因于磁滞损耗的显著降低;当磷酸使用量为0.5 wt%时,50 kHz下功率损耗由79.44 mW·cm−3降低至58.56 mW·cm−3

     

    Abstract: Currently, electronic components applied in household electric appliances, cars and mobile phones are increasingly presenting a trend of miniaturization and intelligence. Thus, it is urgent to reduce the core loss of soft magnetic composites (SMCs) apply at high frequency and high power. In this work, gas atomized Fe-9.6wt%Si-5.4wt%Al (FeSiAl) magnetic powder was firstly subjected to a phosphating process for electrical insulation, then the phosphated FeSiAl magnetic powder was heated, formed, and annealed, resulting in FeSiAl SMCs. Analytical results show that the particle surface of the phosphated FeSiAl magnetic powder was transformed from phosphate to silicate after heat treatment, accompanied by an increase in its crystalline size and a decrease in its coercivity. Core loss of the obtained SMCs also decreases apparently, due to the significant decrease in their hysteresis loss. Moreover, when the amount of the phosphoric acid used reaches 0.5 wt%, the core loss decreases from 79.44 mW·cm−3 to 58.56 mW·cm−3 at 50 kHz.

     

/

返回文章
返回