纤维素纳米晶结构色辐射冷制复合薄膜的制备及性能

Preparation and properties of cellulose nanocrystal based structurally colored radiative cooling composite films

  • 摘要: 辐射制冷通过向外太空发射热量来降低自身温度,是一种绿色、低碳和可持续的降温策略。大多数辐射制冷材料外观颜色单调,多为白色或透明状,而传统着色剂的加入会使材料吸收热量,降低辐射制冷性能。通过自组装法制备具有可调结构色的纤维素纳米晶体/聚乙二醇(CNC/PEG)复合辐射制冷薄膜。并将复合薄膜与多孔结构的醋酸纤维素(CA)膜结合,得到结构色辐射制冷双层复合膜。结果表明:纤维素纳米晶复合薄膜具有鲜艳的结构色,具有明显的双折射现象。随着PEG含量的增加,复合薄膜结构的螺距增大,颜色由蓝绿色转变为红色。CNC/PEG结构色复合薄膜在可见光波段最高反射率可达68.5%,在大气窗口波段的发射率高达93%,具有3.4 ℃左右的环境降温效果。CNC/PEG-CA双层复合膜在可见光波段最高反射率高达91.8%,在大气窗口波段的发射率可达32.2%。与复合薄膜相比,双层复合膜的降温性能更好,与环境温度相比,具有14.3 ℃左右温差。在户外测试中,与环境温度相比,复合薄膜可达到2 ℃左右的降温效果,双层复合膜可达到6 ℃左右的降温效果。

     

    Abstract: Radiative cooling lowers its own temperature by emitting heat into outer space and is a green, low-carbon and sustainable cooling strategy. Most radiative cooling materials have monotonous color appearance, mostly white or transparent, and the addition of traditional colorants will cause the materials to absorb heat and reduce the radiative cooling performance. Cellulose nanocrystal/polyethylene glycol (CNC/PEG) composite radiative cooling films with tunable structural colors were prepared by self-assembly method. And the composite films were combined with cellulose acetate (CA) films with porous structure to obtain structure-colored radiation-cooled bilayer composite films. The results show that the cellulose nanocrystalline composite films have bright structural colors with obvious birefringence phenomenon. With the increase of PEG content, the pitch of the composite film structure increases, and the color changes from blue-green to red. the CNC/PEG structural color composite film has the highest reflectance up to 68.5% in the visible light band, and the emissivity in the atmospheric window band is up to 93%, with an ambient cooling effect of about 3.4 ℃. the CNC/PEG-CA bilayer composite film has the highest reflectance in the visible light band up to 91.8%, and the emissivity in the atmospheric window band is up to 32.2%. Compared with the composite film, the bilayer composite film has better cooling performance, with a temperature difference of about 14.3 ℃ compared with the ambient temperature.In outdoor tests, compared with the ambient temperature, the composite film can achieve a cooling effect of about 2 ℃, and the bilayer composite film can achieve a cooling effect of about 6 ℃.

     

/

返回文章
返回