夹杂问题中的自洽有限元法和复合材料的平均弹性性能

杨庆生, 陈浩然

杨庆生, 陈浩然. 夹杂问题中的自洽有限元法和复合材料的平均弹性性能[J]. 复合材料学报, 1992, 9(1): 79-84.
引用本文: 杨庆生, 陈浩然. 夹杂问题中的自洽有限元法和复合材料的平均弹性性能[J]. 复合材料学报, 1992, 9(1): 79-84.
Yang Qingsheng, Chen Haoran. SELF-CONSISTENT FINITE ELEMENT METHOD FOR THE PROBLEMS OF INCLUSION AND THE AVERAGE ELASTIC PROPERTIES OF COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1992, 9(1): 79-84.
Citation: Yang Qingsheng, Chen Haoran. SELF-CONSISTENT FINITE ELEMENT METHOD FOR THE PROBLEMS OF INCLUSION AND THE AVERAGE ELASTIC PROPERTIES OF COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1992, 9(1): 79-84.

夹杂问题中的自洽有限元法和复合材料的平均弹性性能

SELF-CONSISTENT FINITE ELEMENT METHOD FOR THE PROBLEMS OF INCLUSION AND THE AVERAGE ELASTIC PROPERTIES OF COMPOSITE MATERIALS

  • 摘要: 本文提出了处理夹杂问题的自洽有限元法。它以自洽模型为基础,利用有限元迭代法计算有效介质的平均弹性性能。作为应用,本文利用该方法计算了单向短纤维增强复合材料的平均弹性模量,并比较了纤维的几何形状对复合材料平均弹性性能的影响。数值结果与实验值吻合较好。
    Abstract: The paper presents a self-consistent finite element method (SCFEM) dealing with inclusion problems.Based on self-consistent model, the average elastic properties of effective medium are calculated by the finite element iteration procedure.As applications of this method, the average elastic moduli for unidirectional short-fiber composites are obtained and the effect of fiber geometry on average elastic properties of composites are investigated.The numerical results agree well with those of experiments.
计量
  • 文章访问数:  881
  • HTML全文浏览量:  73
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  1990-12-31
  • 刊出日期:  1992-02-29

目录

    /

    返回文章
    返回