复合材料加筋板的大变形有限元分析

LARGE DEFLECTION ANALYSIS OF STIFFENED COMPOSITE PLATE

  • 摘要: 本文将考虑横向剪切变形的Mindlin's理论应用于复合材料加筋板的大变形分析,在Total-Lagrange坐标系下推导了八结点等参弯曲板单元和三结点等参梁单元的增量平衡方程和切线刚度矩阵,非线性问题采用增量法和Newton-Raphson迭代法相结合的方法求解.本文通过一些算例,证明了所采用单元具有良好的收敛性和足够的精度,并讨论了边界条件、纤维铺设角和加筋疏密等因素对复合材加料筋板非线性解的影响.

     

    Abstract: A finite element model based on Mindlin's theory is used for the geometriclly nonlinear analysis of laminated stiffened plate.Using the total Lagrangian description the incremental equations and nonlinear stiffness matrix of the isoparametric stiffened plate element are formulated.The Newton-Raphson iteration procedure combined with the increment method is employed to trace the nonlinear equilibrium path.A variety of numerical examples are presented to demonstrate the precision and convergence of the method.All the results have a good agreement with those published.The effects of bounday condition,the size of transverse area of stiffener,the distribution of stiffener and the orientation angle of lamina on the geometricaly nonlinear strength of stiffened composite plates are investieated.

     

/

返回文章
返回