求解夹杂问题的有限部积分──边界元法

秦太验, 汤任基

秦太验, 汤任基. 求解夹杂问题的有限部积分──边界元法[J]. 复合材料学报, 1996, 13(2): 65-70.
引用本文: 秦太验, 汤任基. 求解夹杂问题的有限部积分──边界元法[J]. 复合材料学报, 1996, 13(2): 65-70.
Qin Taiyan, Tang Renji. FINITE-PART INTEGRAL AND BOUNDARY ELEMENT METHOD TO SOLVE INCLUSION PROBLEMS[J]. Acta Materiae Compositae Sinica, 1996, 13(2): 65-70.
Citation: Qin Taiyan, Tang Renji. FINITE-PART INTEGRAL AND BOUNDARY ELEMENT METHOD TO SOLVE INCLUSION PROBLEMS[J]. Acta Materiae Compositae Sinica, 1996, 13(2): 65-70.

求解夹杂问题的有限部积分──边界元法

基金项目: 国家自然科学基金资助课题

FINITE-PART INTEGRAL AND BOUNDARY ELEMENT METHOD TO SOLVE INCLUSION PROBLEMS

  • 摘要: 利用Kelvin解及有限部积分的概念和方法,导出求解含夹杂二维有限弹性体的超奇异积分方程,继而使用有限部积分与边界元结合的方法,为其建立了数值求解方法,即有限部积分与边界元法.最后计算了若干典型数值例子夹杂端部的应力强度因子.
    Abstract: Using Kelvin's solutions and the concepts of finite-part integral,a set of hypersingular integral equations to solve the inclusion problems in two dimension elasticity is derived,and its numerical method is then proposed by combining the finite-part integral method with the boundary element method.Finally,several examples are carried out,and the numerical results of the stress intensity factors are obtained.
计量
  • 文章访问数:  763
  • HTML全文浏览量:  82
  • PDF下载量:  426
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-05-30
  • 刊出日期:  1996-05-31

目录

    /

    返回文章
    返回