RTM整体成型复合材料翼盒的固有模态及稳定性
Natural modal and stability of integrated composite wing box fabricated by RTM process
-
摘要: 采用基于水溶性型芯的RTM成型技术制备了整体化的复合材料翼盒, 并对翼盒进行了自由振动模态试验; 采用三维壳单元, 建立了翼盒固有模态及稳定性有限元分析模型, 该模型分析的翼盒固有模态与试验结果吻合很好, 验证了有限元模型的有效性; 为研究翼盒固有模态及稳定性的铺层效应, 采用该模型分析计算了4种铺层方案的翼盒的固有模态及稳定性。研究结果表明: 对称铺层蒙皮有利于提高翼盒轴向压缩与轴向扭转屈曲载荷及固有频率, 而不利于面外弯曲和弯扭组合情况; 腹板减薄和增加腹板45°铺层均不利于提高, 甚至会大幅度降低屈曲载荷及固有频率, 弯扭组合加载最容易导致失稳。Abstract: Based on water-soluble mandrel, the integrated composite wing box was fabricated via resin transfer molding (RTM). The test of natural modal of wing box was conducted. The finite element (FE) models for modal and buckling analysis of wing box were generated by using 3D shell element to investigate the stacking sequence effect on the natural modal and bucking properties. The calculations of natural modal are consistent well with the experiments, validiting the FE model proposed in the paper. The FE model was applied to simulate the natural modal and stability of wing box with four different layups. The results show that symmetrical layers of the skin have significant beneficial effects on natural frequency and buckling loads of wing box under axial compression and torsion, in contrast, have distinct adverse effects on those under the bending and combination of bending and torsion. In addition, the rigidity of web has an apparent beneficial effect on the buckling load and natural frequency of wing box, whereas the increasing of 45? plies or the decreasing of the thickness of web would reduce buckling load and natural frequency.