Silk RGD融合蛋白修饰羟基磷灰石/丝素蛋白支架对成骨细胞生长的影响
Effect of silk RGD fusion protein modified hydroxyapatite/silk fibroin scaffolds on the growth of osteoblasts
-
摘要: 通过浸渍吸附的方法, 用桑蚕丝素-RGD融合蛋白(简称Silk-RGD)对多孔状磷灰石/丝素蛋白(HA/SF)复合支架材料进行表面修饰, 研究了复合支架材料在不同浓度Silk-RGD蛋白溶液中浸渍后对两种不同成骨细胞MG-63和MC3T3-E1黏附、增殖和分化的影响。结果表明, Silk-RGD融合蛋白修饰的复合支架材料的细胞黏附性能显著高于未经修饰的对照组, 且其促黏附性能具有Silk-RGD浓度依赖性; 体外培养7天时, 细胞增殖能力较对照组更显著,当Silk-RGD的吸附量为11 μg/mg时, MG-63的增殖率较对照样提高了21%, MC3T3-E1提高了50%; 而碱性磷酸酶活性检测结果显示, 复合支架经Silk-RGD表面修饰后对MC3T3-E1细胞的分化有一定的促进作用, 但对MG-63细胞的影响不明显。Abstract: A bombyx mori silk fibroin-RGD fusion protein was used to modify the porous hydroxyapatite/silk fibroin(HA/SF) composite scaffolds by soaking the scaffolds into the protein solution with different concentrations. The osteoblasts, MG-63 and MC3T3-E1 were seeded onto the silk-RGD modified HA/SF composite scaffolds in order to evaluate the cell adhesion, proliferation and differentiation on scaffolds. The results show that the cell adhesion property in the silk-RGD modified scaffolds is higher than that in the control (i.e., unmodified scaffolds), and depended on the concentration of silk-RGD. After being cultured for 7 d in vitro, the proliferation rates of MG-63 and MC3T3-E1 cells increase by 21% and 50%, respectively, compared with the control. For MC3T3-E1 cells, the alkaline phosphatase (ALP) activity data show an improvement of cell differentiation on the scaffolds after the silk-RGD modification, but no significant difference is found for the MG-63 cells.