压电复合材料三维壳体简化数值建模研究

Simplified numerical modeling of 3D piezoelectric composite shells

  • 摘要: 为有效分析三维压电复合材料壳体结构非线性、 单向耦合压电弹性问题, 基于变分渐近方法(VAM)建立了壳体结构在机械和电场作用下的简化模型。推导了基于旋转张量分解概念的压电复合材料三维壳体能量表达式; 利用变分渐近法将三维壳体严格拆分为二维壳体线性分析和沿法线方向的一维非线性分析; 进行了降维后近似能量推导及Reissner-Mindlin形式转换; 提供了三维场重构关系以得到沿厚度方向的准确应力分布。通过对由4层压电复合材料构成的壳体柱形弯曲算例分析表明: 基于该理论和重构过程开发的变分渐近程序VAPAS重构生成的三维应力场精确性较一阶剪切变形理论和古典层合理论更好, 与三维有限元精确解相吻合, 表明该压电复合材料壳体模型的有效性。

     

    Abstract: Based on the variational asymptotic method (VAM), an engineering model for piezoelectric composite shell under mechanical and electronic loads was established in order to efficient analyze the nonlinear, one-way coupled piezoelectric problem. The 3D energy expressions based on the decomposition of rotation tensor (DRT) were deduced. The 3D shell model was decomposed into a 2D, nonlinear shell analysis and a linear analysis through the normal direction based on VAM. The approximate energy after dimensionality reduction was deduced and converted to a form of Reissner-Mindlin model. The 3D field recovery relations were provided to obtain accurate stress distribution through the thickness. The cylindrical bending example of 4-layer piezoelectric composite shell shows that the 3D stress field recovered by the variational asymptotic plate and shell analysis program (VAPAS) based on this theory agrees better with the exact results than those of first-order shear deformation theory (FOSDT) and classic laminated theory (CLT), indicating the validity of this model.

     

/

返回文章
返回